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Abstract
A new instrument for conducting astronomical searches for nanosecond-scale optical pulses

has been designed, built, and is now operating at Oak Ridge Observatory in Harvard, MA.

The Advanced All-sky Camera, based on the previous generation ASIC-based design, is im-

plemented using Xilinx Virtex-5 LX110 FPGAs to create a flexible and configurable system.

Each FPGA has 32 1.5 Gsps analog-to-digital converters, implemented as 8-level flash ADCs

using 256 of the Virtex-5’s LVDS input pairs. Thirty-two FPGAs in the system total 1024

ADC channels, each with 8kB of sample memory, for triggering on and recording coincident

pulse waveforms from an array of 1024 photomultiplier tube anodes.

The camera performs a transit-mode search of the Northern sky from −20◦ < δ < +70◦

for nanosecond astronomical phenomena and pulsed laser beacon signals from extrasolar

technological civilizations. The 1.8 m f/2.5 telescope images a 1.6◦ × 0.2◦ area of the sky

onto the camera’s beamsplit focal plane where coincident optical (300 nm–900 nm) pulses

in matched PMT pixel pairs trigger the camera readout.

Initial observations with the Advanced All-sky Camera recorded 318 coincident pulse

events, eighteen of which are identified as Čerenkov light from cosmic ray induced extensive

air showers, ∼30 are traced to aircraft, and the rest are single-pixel, low-amplitude pulses

caused by detector artifacts.

This thesis examines the plausibility of pulsed optical interstellar communications, de-

scribes briefly the original all-sky camera and its limitations, presents the design of the

PulseNet-V FPGAs and the Advanced All-sky Camera, and concludes with tests and initial

observations using the new system.
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Introduction

The subject of this dissertation is the design, construction, and operation of a one-of-a-

kind instrument in pursuit of a bio-astronomical goal, the discovery of life on other worlds.

Though the goal might at first seem unorthodox or far-out, it is in fact entirely conven-

tional, and is a discovery hotly pursued by many professional planet-hunting astronomers

and robotic spacecraft engineers, as will be explained shortly. A discovery of such signifi-

cance does not come easily and will probably employ the efforts of many more generations of

astronomers and engineers. My contribution to the effort, included in these pages, required

solving substantial engineering challenges. As the thesis has been produced for partial ful-

fillment of the degree of doctor of philosophy in applied physics from the Harvard School

of Engineering and Applied Sciences, much space has been devoted to a detailed technical

description of the detection and processing system itself. The secondary focus is on one spe-

cific search for interstellar transmissions from technological civilizations within the Galaxy:

a survey of the Northern sky for non-anthropogenic artificial optical pulses. The survey, con-

ducted using the Harvard/Planetary Society’s 1.8 m Optical SETI Telescope at Oak Ridge

Observatory in Harvard, MA, has been on-going since April, 2004. The original camera

for this system, the All-sky Camera (AsCam), uses 32 custom integrated circuits (called

PulseNets) to record the waveforms of any strong coincident pulses received from 512 pairs

of light detectors. In 1998, when the PulseNet design effort was conceived, a full custom

integrated circuit seemed to be the only way to accomplish the high-speed data conversion

and pulse processing task, for so many detectors, at reasonable cost, power, and density.

After a few years of operating the survey, it was obvious that more capability was needed

than PulseNet could provide. Eventually I developed a way in which a more advanced and

flexible PulseNet could be built using commercially available electronics, i.e. without having
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to go through a long and failure-prone custom integrated circuit design process. The end

product of my re-design, PulseNet-V, was installed into the all-sky camera, now called the

Advanced All-sky Camera (AdvCam), in August, 2012 and is currently in operation at Oak

Ridge. The elegance of the PulseNet-V design is that the analog-to-digital conversion of

the light detector signals and the processing of those signals can be handled by field pro-

grammable gate arrays (FPGAs), highly flexible integrated circuit, without the need for

external analog-to-digital converters (ADCs). The differential input pairs of the FPGAs can

be combined to create flash ADCs, allowing high-speed, low resolution conversion en-masse

for an FPGA with many I/O pairs. The re-configurable digital logic resources on the FPGA

provide unlimited possibilities for pulse processing, waveform acquisition, and trggering af-

ter the detector signals have entered the digital domain. Using PulseNet-V, the Advanced

All-sky Camera is able to search for nanosecond pulsed optical sources more effectively than

ever before. Its design, implementation, and performance is detailed herein.

Outline

We begin with relevant background information including a discussion of the plausibility

of the pulsed optical technique, the feasibility of transmitting and receiving in the optical

band through the interstellar medium (ISM), and noise sources which must be considered.

The all-sky survey and the drawbacks of its ASIC-based camera system are explained in

Chapter 2. Chapter 3 introduces the PulseNet-V, its samplers, data acquisition and trigger-

ing circuitry, processor architecture, and software features. Chapter 4 describes the operation

of the All-sky observatory and the Advanced All-sky Camera. Test results and characteriza-

tions of PulseNet-V and the Advanced All-sky Camera are shown in Chapter 5 along with

the interpretation of the initial observations using the full Advanced All-sky System.
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Chapter 1

Background

1.1 “Is Anybody Out There?”

Are humans the only intelligent life in the cosmos? This is a fundamental question about

the nature of our universe. As far as we know, humans are unique. But our constituents are

not. Forged in the stellar furnaces of dying stars and broadcast throughout the galaxy, the

atoms of our bodies are identical to the atoms we find in the interstellar medium. Humans,

plants, animals, and most of everything we see, is all star stuff [55]. The same stellar

material is found scattered through space forming basic organic molecules so common to

terrestrial life. The Earth, the Sun, and even the Milky Way, we know, are not unique in

the universe. The process by which we evolved is not predicated on the location in which it

occurred, amidst the thin veneer on top of a blue marble, the third planet orbiting a middle

aged yellow star in a rural dust lane of a common barred-spiral galaxy. The ingredients

for life, the substrates, the processes, and the time needed to grow thinking beings exist

throughout celestial space. What, then, is the reason to assume that life exists nowhere else

but on Earth, and that humans are the only living thing able to look into a dark, seemingly

empty abyss, and say “Hello”? The universe is unimaginably vast, and one has to accept

the possible existence of other intelligent civilizations, capable of communication, evolving

and inhabiting a planetary body just as humans have done. If we choose to answer the

question “Is anybody out there?”, how should we search for intelligent civilizations given

the incredible timescales and distances inherent to the universe? How can we attempt to
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discover, from our terrestrial outpost, evidence of life?

1.1.1 Search Methods

Past generations have suggested ways to communicate with our possible celestial neigh-

bors which sound quaint, even dubious, by today’s standards. A proposal emerged in the

1820’s to create a visual representation of the Pythagorean theorem in the Siberian forests

large enough to be seen from the moon or Mars. Vast strips of pine trees were to be used to

form the borders of a right triangle, and fields of wheat fill the interior of the triangle and

exterior squares1. Austrian astronomer Joseph von Littrow (1781–1840) imagined a scheme

to dig circular trenches in the Sahara, fill with water topped with kerosene, and set on fire

when Mars was close to the Earth [30]. A mathematician, the German Carl Friedrich Gauss

(1777–1855), had an interest in using a heliotrope, a surveying instrument of his invention,

with one hundred 16ft2 mirrors to signal the inhabitants of the moon, making “a discovery

even greater than that of America” [19]. Contemporary scientists are still looking for ways to

discover extraterrestrial life. The modern methods generally fall into one of three categories:

1. Direct Sensing Examining the surfaces of planets and other rocky bodies in the solar

system for biological activity by receiving material in the form of meteorites or by

sending robotic, and eventually human, spacecraft to explore the bodies;

2. Planet Hunting Identifying extra-solar planets that have environmental conditions

known to produce biological lifeforms that can later be tested for bio-signatures in-

dicative of life;

3. Technological Search Attempting the discovery of the technological indications of a

civilization, usually in the form of intentionally or unintentionally sent electromagnetic

communications.

Governmental aerospace organizations have the available resources to engage in the first type

of search. The National Aeronautics and Space Administration (NASA) has been especially

1The attribution of the proposal is sometimes given to Gauss, but this has been called into question by
Crowe [19].
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active in use of the direct sensing method. In 1976, NASA landed two Viking space probes

on Mars to take high resolution pictures of the surface, analyze the composition of the

atmosphere, and specifically test for gaseous emissions from heated martian soil to detect the

presence of microbes. New missions searching for life on Mars continue to this day with the

Mars Curiosity rover seeking out environments on the surface where life exists or has existed

in the past. Planetary material, that was ejected from the martian surface and landed on the

Earth as meteorites, has been studied for signs of biogenic activity [45]. Numerous future

missions are planned by NASA and others. For example, the European Space Agency (ESA)

is planning an outer planet flagship mission to the Galilean satellites of Jupiter with two of the

stated science goals being “Explore Europa to investigate its habitability” and “Characterize

Ganymede as a planetary object including its potential habitability” [29]. Billions of dollars

are spent on these missions. They present the most direct way to investigate nearby planets

for evidence of microbial life.

Professional astronomers are advancing the techniques in method two. At least 837 extra-

solar planets have been confirmed, most in the last decade. With each discovery, details of

the planet are assessed. The most exciting discoveries are of “Earth-like” planets with mass,

orbital distance from its host star, radii, and density similar to the Earth. These planets

may be more likely to harbor life. To confirm whether one of the discovered planets hosts

a biological ecosystem would require observation of some kind of indicator, or combination

of indicators, that can only exist on living planets, a bio-signature. There is ample debate

over what constitutes a bio-signature. Possibilities include the presence of combinations of

atmospheric gases like methane and oxygen, light polarization from a planet’s surface due

to molecular chirality [42], planetary features due to photosynthesis [57], or characteristic

seasonal changes to global biomass. With some exceptions, details of exoplanets’ atmospheres

and surfaces are currently beyond modern day capabilities2 The idea of using bio-signatures

to make an indirect discovery of life on an exoplanet may be workable in the future, but

today it is still in the realm of speculation.

2Bowler et al. [7] was able to detect methane absorption and infer the very dusty nature of the atmosphere
of HR8799b, a 4-7 Jupiter mass planet orbiting 68 AU from its host star, which is ∼40 pc away. The technique
is only practical for large planets in distant orbits. Berta et al. [5] reports the flat atmospheric transmission
spectrum of the super-Earth GJ1214b. The observation was made possible by the extremely small radius of
the M dwarf stellar host (0.21 R⊙) and the closeness of the system (13 pc).
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With space probes limited to our solar system and planetary searches for bio-signatures

left to future astronomers, technological searches have the advantage that they can be ac-

complished using existing technology and are not limited to the solar system or very close

planetary systems. Observing the second-order effects of microbial life on a small planet next

to a bright star is a highly attenuated signal, making for a controversial indirect discovery. A

technological civilization that is transmitting in the electromagnetic spectrum might provide

a much stronger signal that represents direct, incontrovertible proof of extraterrestrial life.

1.1.2 Galactic Census

The galaxy is a vast expanse so large that it challenges our perception of time and space.

The distances involved cannot be compared to anything we normally experience on Earth.

To travel to even the nearest star, Proxima Centauri, would require some tens of thousands of

years, much longer than a human lifetime, and perhaps longer than the lifetime of our entire

modern civilization3. Even the light from Proxima Centauri takes 4.24 years to arrive at the

Earth, meaning we are seeing it as it was four years past. This is often how distances in the

galaxy are measured, in light-years (ly). The galaxy is composed of three main structures:

the disk, the halo, and the central bulge. The disk is ∼100,000 ly across, ∼1,000 ly thick,

and contains the galaxy’s spiral arms, hydrogen and molecular clouds, and stars of similar

metallicity to the Sun but with a wide range of ages and sizes. The spherical halo extends

somewhat beyond the radius of the disk and contains metal-poor, high velocity, older stars.

Globular clusters, spherical collections of hundreds to thousands of stars, very tightly bound

by gravity, are a main feature of the halo. The central region of the galaxy, the bulge, is

a roughly spherical region 10–20 kly in radius with 1/6 to 1/3 the mass of the disk. It is

dense with mostly older, but metal rich stars. At the nucleus of the galaxy is a massive

black hole surrounded by thousands of old, red stars, but there is also a disk of very young

massive Wolf-Rayet stars. The galaxy is filled by a weak magnetic field that bends the path

of cosmic rays – high energy charged particles that stream throughout the galaxy but whose

3Though we certainly hope not!
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origin is unknown4. Another even more mysterious yet pervasive constituent of the galaxy is

dark matter. Galactic rotation curves indicate the existence of this as-yet-unknown source

of mass that has, so far, eluded discovery. The Sun lies in the disk on the inner rim of the

Orion-Cygnus arm, in a diffuse interstellar cloud called the Local Bubble, ∼27,000 ly from

the galactic center.

The Drake Equation

Given the scale of the galaxy, does it even make sense to assume that contact with a

neighbor is possible? Frank Drake proposed an equation to spur discussion of the problem.

His equation attempts to estimate and place a bound on the average number of communicat-

ing civilizations in the galaxy, and therefore, the average distance between them. It collects

the factors that we might need to know about in order to discover life in space.

Nciv = R∗ · fp · ne · fl · fi · fc · L (Drake Equation) (1.1)

Where,

R∗ = The rate of formation of stars suitable for the development of intelligent life,

fp = The fraction of those stars with planetary systems,

ne = The number of planets, per solar system, with an environment suitable for life,

fl = The fraction of suitable planets on which life actually appears,

fi = The fraction of life bearing planets on which intelligent life emerges,

fc = The fraction of civilizations that develop a technology that releases detectable signs

of their existence into space, and

L = The length of time such civilizations release detectable signals into space.

4Lower energy cosmic rays can originate in supernovae blast waves but higher energy cosmic ray origins
are more speculative and include active galactic nuclei, quasars, gamma ray bursts, or new physics (dark
matter annihilation [6], strongly-interacting neutrinos [24], topological defects in the universe [49]).
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Planetary Findings

When Frank Drank proposed his equation in 1961, the value of fp, the term that rep-

resents the fraction of stars having planets, could only be guessed. Numerous methods for

discovering extrasolar planets (exoplanets) have been developed since then. The three most

productive techniques are stellar transits, Doppler spectroscopy, and gravitational microlens-

ing.

In the transit method, a planet passing in front of its star causes a small decrease in the

apparent brightness of the star that can be detected by very accurate photometric measure-

ments. The size of the planet can be determined from the details of the light curve and,

with many brightness measurements over time, periodicities in the apparent brightness will

indicate the planet’s orbital period. For this method to work, the planet’s orbital plane

must oriented such that the planet occludes a piece of the star’s disk. Large planets are

more likely to be found using the transit method since more of the star will be occluded

during a transit, resulting in a bigger dip in brightness. Planets with small orbital distance

will also be preferentially observed since larger orbital inclination angle will still result in an

occultation of the star’s disk. Requirements for orbital distance and inclination means that

many stars must be observed before one is found whose planet has the right parameters for

detection. The Kepler mission is one such telescope using the transit method. Launched in

March 2009, Kepler is a space-based telescope focused on a roughly 11◦ × 11◦ field in which

brightness measurements are taken on ∼150,000 stars every 30 minutes, looking for planet

transit events. As of 19 February, 2013, Kepler has 116 confirmed planet discoveries and

2,717 candidate planets waiting to be confirmed [47].

Doppler spectroscopy uses a star’s spectral lines to measure the radial velocity of the star.

An orbiting planet will exert a gravitational tug on the star, causing it to wobble back and

forth. This indirect indication of the planet’s effect on its parent star is often used to confirm

planet candidates found using the transit method. From the radial velocity measurements, a

minimum value of the planet’s mass can be determined. The planet’s true mass and density

can be calculated with both doppler and transit measurements of a candidate planet’s star.

Spectrometers like HiRES on the W.M. Keck Observatory in Hawaii and ESO’s HARPS at

La Silla Observatory in Chile have confirmed about two-thirds of all identified exoplanets.
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Howard et al. [40] report that extrapolation of radial velocity data obtained using the HiRES

spectrometer predicts 14% of sun-like stars host Earth mass planets (1 M⊕–3 M⊕).

The gravitational microlensing method makes use of an effect whereby the gravitational

field of a foreground star lenses the light from a distant background star. The lensing can be

seen only when the background star, foreground star, and the Earth are very closely aligned.

The effect will typically last weeks or days. If the foreground star has a planet, the planet’s

gravitational field will affect lensing of the background star, allowing the existence of the

planet to be detected. The probability of the precise alignment for a planet to be detected is

very low, so detections are made by continuously monitoring many stars for lensing events.

The center of the galaxy has the highest density of stars and is normally the target for

microlensing observations. As of February 19, 2013, gravitational microlensing accounts

for 17 confirmed exoplanet discoveries. A disadvantage of this planet finding method is

that the lens stars are typically very far away (kiloparsecs) so follow-up observations using

Doppler spectroscopy or stellar transits are normally not possible. On the other hand,

gravitation microlensing can detect planets that are much farther away from their bound

star than the other methods. Cassan et al. [11] issued a report on the abundance of planets

in the galaxy using statistical analysis of microlensing data. For planets between 0.5 AU

and 10 AU, they calculate that 17% of stars host Jupiter mass planets (0.3–10MJ, mass of

Jupiter MJ = 318M⊕), 52% of stars host Neptune mass planets (10–30M⊕), and 62% of

stars host super-Earths (5–10M⊕). Extrapolating to Earth mass planets seems to point to

an even higher abundance. Cassan et al. [11] further conclude that planets outnumber stars

in the galaxy.

Beyond advances in extrasolar planet discoveries, Strigari et al. [59] present an analysis

claiming there may be up to 105 compact gravitationally unbound objects between 10−8–

10−2M⊙ (mass of the Sun = M⊙) for every star in the galaxy. These objects are termed

“nomads” as they are free to wander the galaxy. Though they don’t have a parent star to

provide light and warmth, some may have thick atmospheres and enough internal heating

to support a thriving microbial world [1]. With ∼400 billion stars in the galaxy, an average

of more than one planet per star, and potentially 4×1016 other wandering compact objects,

the available real estate for extraterrestrial life is vast.
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Communicating Civilization Estimates

In addition to the estimates of fp, the fraction of stars with planetary systems, values of

R∗ have a fair amount of quantitative backing. Recent investigations of star forming regions

using the Spitzer Space Telescope, a space-based infrared observatory, find that the total

star formation rate in the galactic plane is 0.68–1.45 M⊙·yr−1 [54]. Diehl et al. [20] report

that measurements of gamma rays from radioctive 26Al, which provide a “snapshot” of nu-

cleosynthesis in the Galaxy, indicate a star formation rate of 4.0 M⊙·yr−1 and corresponding

stellar production rate of ∼7.5 stars per year. The terms of the Drake equation having to do

with the abundance and development of life, fl, fi, and fc, are somewhat more speculative.

The analysis by Glade et al. [27] in 2012 uses 0.5, 0.2, and 0.2 respectively. By combining all

but the final terms into Rcom, the rate that communicative civilizations arise, we can write a

simpler equation N = RcomL. Estimates for the number of civilizations have a wide spread

because the result is based on two very uncertain numbers. The average lifetime of civiliza-

tions is an important number, not only because of its existential implications, but because

if civilizations are long lived, then the nearest one might be close by, within communicative

range. If civilizations are short lived, or do not arise often, then the nearest communicative

civilization may be very far away, and there may not be any temporal overlap with our

human civilization [8].

One last point to keep in mind is that the number of communicating civilizations predicted

by the Drake equation is only an estimate of the average. For the last few terms, accurate

values can really only be acquired by sampling habitable planets in many galaxies and

averaging how often life arose, evolved, and produced an intelligent communicating species.

If that were even possible, it spoils the game as finding even one intelligent species is the

whole purpose. Having an exact expected value for the number of intelligent communicating

civilizations in our galaxy is somewhat beside the point. We want to know, specifically, if

there are any communicative civilizations in our galaxy. An average of all galaxies would not

provide that answer. The only way to find the answer is through exploration of our galaxy

through space missions, astronomical observations, or conducting SETI surveys.
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Table 1.1: Drake Equation Estimates

Scenario Rcom(yr−1) L (yr) Nciv Distance (ly)

Optimist 1 108 108 ≈ 100
· · · 1 104 104 ≈ 2, 500
· · · 10−2 104 102 ≈10,000
· · · 10−2 106 104 ≈2,500
· · · 10−4 106 102 ≈10,000

Pessimist 10−4 104 10−2 ≈107

Note: Table adapted from Ekers [23].

1.1.3 What are we looking for?

Short of an alien landing a spaceship and announcing its presence, what type of evidence

do we need to constitute discovery of extraterrestrial intelligence? Intelligence is not directly

detectable, per se, only the consequences of the intelligence can be observed. The effects

of an intelligent civilizations actions or its technologies’ effects are observables that can be

quantified and understood as evidence. The night lights of a metropolis, fouling of the

planet’s atmosphere with an industrial chemical, or by-products of spacecrafts’ propulsion

engines are examples of technological indicators.

How can the evidence of technology be acquired? Obtaining a physical artifact from

the civilization would suffice. This might involve the artifact being captured by the Earth’s

gravity and falling to the surface, or being captured by an orbiting spacecraft, or being dis-

covered buried on the surface of Earth, the moon, or even Mars. While the possibility of

discovering an artifact exists and we should be open to it, the majority of what we know

about the universe comes to us in the form of electromagnetic radiation. An intentional or

unintentional signal or communication that constitutes evidence of technology and intelli-

gence could take the form of any elementary particle, known or unknown. While we think of

photons as being the most efficient particle for communication, others may exist. An ideal

particle for signaling should have the following properties [48]:

1. The energy per quantum should be minimized, other things being equal,

2. The velocity should be as high as possible,

3. The particles should be easy to generate, launch, and capture, and
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4. The particles should not be appreciably absorbed or deflected by the interstellar

medium.

For a signal to be detected and to be recognized as artificial:

5. The number of particles received must significantly exceed the background, and

6. The signal must exhibit some non-natural property.

Charged particles, like protons and electrons, interact and are absorbed by other matter in

the interstellar medium and are deflected by magnetic fields unless they are of very high

energy, in opposition with property 1. Uncharged particles, if they have mass, neutrons

being one example, are less desirable compared to photons as they will have a lower velocity

(photons always travel at the maximum, the speed of light), or if they are created with a

very high kinetic energy, the energy per quantum will be large, violating property 1 again.

Neutrinos are neutral, have a very small mass, and can be formed in beams, but detection

is difficult due to their extremely low interaction probability. Gravitons violate property 3

for being difficult to generate, detect, and direct. Our experience with photons, by contrast,

is that they are easy to transmit and detect, they carry much of the information that we

know about the universe, and humans have developed many tools and resources for detecting

electromagnetic waves. We conclude that the photon is the best of the known fundamental

particle that satisfies the above requirements for interstellar signaling and efforts for detecting

intelligent life should concentrate on the electromagnetic spectrum.

1.1.4 The Spectrum

Detectable photons in the electromagnetic spectrum span 24+ orders of magnitude in

energy, from the extreme low frequency (ELF) radio waves to the highest energy gamma

rays of 1012 eV or more. Within certain energy ranges, photons seem to interact with matter

in similar ways, so the spectrum is separated into bands.

Observational astronomy is occurring in all these bands so any one of them could be con-

ceivably used for a potential search for interstellar communications. Historically, the radio

band has been favored. Cocconi and Morrison are regarded as being the first to analyze
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Table 1.2: Electromagnetic Bands

Band wavelength frequency energy

Radio waves 33 km–1000µm 9 kHz–300 GHz 40 neV–10 meV
Microwave radiation 10,000µm–1000µm 30 GHz–300 GHz 0.01 meV–1 meV
Terahertz radiation 1000µm–100µm 300 GHz–3 THz 1 meV–10 meV
Infrared radiation 1000µm–0.74µm 300 GHz–0.4 PHz 1 meV–1.7 eV
Visible radiation 740 nm–350 nm 0.4 PHz–0.86 PHz 1.7 eV–3.5 eV
Ultraviolet radiation 350 nm-10 nm 0.4 PHz–30 PHz 1.7 eV–100 eV
X-ray radiation 10 nm–0.01 nm 30 PHz–30 EHz 100 eV–100 keV
Gamma radiation <0.01 nm >30 EHz >100 keV

objectively the choice of optimum wavelengths, and to propose a search for these interstellar

communications [14] in 1959. They suggested the neutral hydrogen radio emission line (1,420

Mc./s) was a frequency every technological civilization in the galaxy must know. Since then,

many more astronomical radio emission lines have been discovered, reducing the appeal of a

special frequency. Later studies by Cordes and Lazio [17] showed that interstellar scintillation

can confuse detection of microwave carriers and hamper decoding of any information con-

tained within it. Cocconi and Morrison considered the possibility of using optical or gamma

ray wavelengths, but dismissed them as requiring complicated techniques and requiring too

much power. Only two years after Cocconi and Morrison’s paper, Schwartz and Townes

[56] recognized the potential of the laser, suggesting that it was only an accident of history

that caused its development to come 30 years late, and perhaps another civilization reversed

our history, becoming much more advanced in laser technology before advancing short-wave

radio techniques. Even with this historical disadvantage, on Earth at least, the laser has

transformed terrestrial telecommunications, enabling the high-speed digital fiber-optic net-

works which form the backbone of our communications infrastructure. Laser development

has seen exponential growth in recent decades. There are now continuous wave megawatt

lasers5 [3], lasers that can nearly achieve inertial confinement fusion with nanosecond mega-

joule pulses [46], and lasers able to explore atomic timescales with attosecond pulses [28].

These developments call into question the early dismissal of the optical band.

In order to decide which band is “best”, radio or optical, Townes6 [61] questioned what

5Used for, of course, shooting down satellites in orbit [58].

6Charles Hard Townes, of Nobel prize winning, maser and laser inventing, and sturdy middle-name-having
fame.
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Figure 1.1: Electromagnetic Spectrum [41]

should be the metric for comparison. How are we to know what factors are important? Is

it most important for the signal to be easy to recognize or exceptionally simple to receive?

Total broadcast power or energy consumed by the transmitter could provide a cost function

to be minimized, but can a long-lived civilization be expected to consider power a limited

resource? A scarcity of a particularly important resource could certainly restrict the options,

but resource availability may be very different on other planets and in other parts of the

galaxy. A complex system might be limited by costs associated with building materials,

construction, and design. The size of the transmitter or receiver might need to be minimized

for space flight. To perform in extreme weather conditions, such as wind, rain, sand, or ice

storms, a system may need to be as rugged as possible. While atmospheric transmission is

an issue for terrestrial systems, it is completely bypassed for operation in space or on a small

moon.

If information is to be relayed in a signal, a critical parameter for a communication system

that cannot be ignored is the delivered signal-to-noise ratio. On the sole basis of signal-to-

noise for equal broadcast power, Townes [61] concludes that, using reasonable assumptions,

optical/infrared systems using photon detection can be as good as, and possibly much better

than, microwave systems using linear detection. The directionality achievable at shorter
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wavelengths with optical telescopes tends to make up for the additional energy needed to

create the photons.

The take-home message is that both the radio/microwave and optical/infrared regions of

the spectrum are viable spaces for interstellar communication, and an incidental consider-

ation could cause one or the other to be seen as more favorable. Since explorations of the

radio bands have been underway for over fifty years without success, let’s consider the type

of signal which might reasonably be expected in the optical band.

1.1.5 Modulation

Should we be looking for short pulses of light or some kind of spectral lines? Howard,

Horowitz, et al. [39] answered this question best and most succinctly. Operating with very

narrow linewidths is part-and-parcel of radio frequency techniques. For radio frequency (RF)

oscillators, bandwidths are routinely made pure to a part in 109, and detection of such a

pure frequency can be accomplished with a simple power-in-band estimate without assuming

anything about the modulation of the waveform. Out-of-band RF noise can be filtered with

a range of high quality filters. Coherent detection is routine; signals can easily be mixed

with a local oscillator down to baseband to give quadrature output. Nature also seems to be

amenable to pure RF tones. Narrow linewidth signals are barely affected by the interstellar

medium. For most lines of sight through the galaxy within 100 kpc, frequencies around

1 GHz are broadened <1 mHz [17]. In contrast, as seen in observations of pulsars, short RF

pulses in time get stretched significantly by travel through the galaxy. Due to the dispersion,

a pulsed RF communication link would have a limited bandwidth, so broadband RF pulses

would be less useful for interstellar communication.

Recovery of a narrow frequency in the optical range, however, must use complicated

optical heterodyning techniques to mix down to a microwave intermediate frequency (IF).

Coherent detection, though common at radio frequencies, is subject to a quantum limit

precisely because it simultaneously measures amplitude and phase. The added noise is nor-

mally not significant compared to kBT for RF. At optical frequencies, where hν � kBT ,

the Bose-Einstein distribution dictates that the electromagnetic modes are mostly empty.

Photon arrivals in different modes are statistically independent, so individual photons can
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be counted [43]. Detection at optical frequencies using photon counters is not subject to the

hν of quantum noise because the counting process only measures the number of photons in

a wave, but not the phase of that wave. The noise associated with detection then is propor-

tional to the square root of the number of counted photons. Whereas a carrier wave is ripe

for detection at radio frequencies, short pulses of photons are efficiently detected at optical

frequencies. Doppler broadening of an optical carrier due to the Earth’s rotation (0.5 km/s)

is of the order 1 GHz whereas the broadening is only ∼2 kHz for a 1 Ghz RF carrier. This is

simply due to the optical frequencies being so much higher than radio frequencies. Not only

that, the galaxy has changed her mind too, allowing nanosecond optical pulses to pass with

very little dispersion in the interstellar medium [23]. Very short pulses are easy to produce

with lasers (several techniques are available: Q-switching, pulse pumping, and mode-locking)

and achievable even with megajoule output power [46].

A pulsed communication system or beacon, then, seems more favorable than a modulated

carrier for optical interstellar signaling. Still, the fact that coherent optical systems are so

widely used for terrestrial high-bandwidth fiber-optic telecommunications networks should

leave open the possibility of searching for CW narrow-band optical features. Whenever pos-

sible, astronomical optical spectroscopic observations should be on the look-out for artificial

laser lines, as in the study by Reines and Marcy [52].

1.2 Pulsed Optical SETI

To determine if a pulsed optical communication system is feasible, we shall explore some

of the relevant issues in more detail. Let’s consider how transmission and reception might

work, the communication range that can be reasonably expected, and the role the interstellar

medium plays.

1.2.1 Scheme

From the transmitter’s perspective, an efficient scheme would be to observe and select

nearby stars for targets with a high likelihood of harboring life. Powerful broadcasts could

then be sent to the resultant list of candidate stars. Presumably an advanced technologi-
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cal civilization would have commissioned a detailed study of the galaxy before attempting

interplanetary communication and would have knowledge of planets in their stellar neighbor-

hood, and further, which of those planets are in habitable zones. With fast steering optics, a

beacon pulse could be transmitted sequentially to each of a list of target stars. For example,

with a target list of 1000 nearby stars with habitable zone planets, a transmitter which can

slew and achieve acceptable pointing accuracy in 100 ms can send a beacon pulse to each

star every ∼100 seconds. The galaxy is a kinetic landscape with radial and proper motions

unique to every star so care must be taken when aiming in order to accurately hit a moving

target from light years away. A long list of targets reduces the pulse repetition rate for each

star, and potentially the chances of reception by any one target. However, an abundance of

good targets would be an opportune complication as more habitable planets means a higher

probability that at least one of them will play host to an intelligent civilization (see § 1.1.2

for details of galactic planetary abundance). The beacon message could be one or more short

pulses from a high powered laser mated to a large optical telescope.

At the reception end, complicated pointing procedures are unnecessary. A telescope

pointing directly at the apparent position of the transmitter’s host star would receive the

transmission. The photons from the laser pulse that are unscattered by the ISM arrive at

the receiver with the same pulse width as when they were transmitted. In order for the

received laser pulse to be noticed, its intensity must exceed the stellar background during

the pulse period. As a practical matter, the minimum number of photons collected from

the pulse must be a few dozen to account for reflection losses and quantum efficiency of

the detectors. With these minimums met, if a casual observer could perceive the incoming

pulse at short timescales, he/she would see many photons arrive all at once as opposed to

the steady but random arrival of single stellar and night sky background photons, i.e. the

star would appear orders of magnitude brighter during the pulse arrival window. A pair of

photomultiplier tubes and a threshold circuit are all that is needed to detect the pulse. Filters

are unnecessary and undesirable when searching for a signal as the transmission wavelengths

is unknown; broadband detectors are sensitive to a pulse of any wavelength within their

passband.

How feasible is it to send a laser pulse over interstellar distances? In terms of technological

constraints, we can draw conclusions based on what we know is possible given the current
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state of telescope and laser development. Ground based optical telescopes have attained

apertures of 10 m (Keck and Gran Telescopio Canarias) and 40 m class telescopes are being

planned [26]. With sufficient effort and resources, we see no reason why this could not be

scaled to at least 100 m apertures. Space-based telescopes diameters are less than an order

of magnitude smaller (JWST planned for ∼6.6 m [25]) but are not constrained by ultraviolet

and infrared atmospheric absorption, so very long and short optical wavelengths should be

considered. For an idea of the scale of possible high power lasers, the National Ignition

Facility has achieved 2 MJ, 4 ns (500 TW) pulses at 1053 nm (converted to 527 nm and

351 nm) [46]. The construction is parallelizable and the efficiency of the NIF is low (using 10%

efficient flash lamps) so future lasers could conceivably reach 100 MJ or more. Engineering

a ground-based telescope to control mirror heating and to account for air turbulences while

maintaining a diffraction limited focus with such high energy density pulses is no doubt a

major challenge, but adaptive optics provides hope that this complication could be overcome.

The possibility of beaming a pulse to another star through the interstellar medium will

now be considered. We will show, assuming only current levels of technology, that pulsed

optical communication over many parsecs (pc) (1 pc=3.26 ly) is feasible.

Telescope Beamwidth and Directivity

To make an interstellar communication link efficient, the energy radiated by the trans-

mitter should be tightly focused at the target rather than wasted by being lost into space.

Telescopes are able to create very tight beams using precision optics. The beam divergence

is physically limited by diffraction, but practically limited by the optical and mechanical

precision of the telescope, and by atmospheric turbulence. For a uniformly illuminated cir-

cular aperture, the far-field beam intensity at angle θ is given by the Airy disk diffraction

pattern For small angles, the full width at half power beam size is approximately

θFWHP ≈ 1.05
λ

Dt

. (1.2)

A small amount of power is lost to the sidelobes for a uniformly illuminated aperture. The

fraction contained within the beam is given by

f(θ) = 1− J2
0

(
πDt

λ
sin θ

)
− J2

1

(
πDt

λ
sin /θ

)
(1.3)
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where J0 and J1 are the Bessel functions. For the FWHP beam, the fraction contained

fFWHP is 82.9%. The solid angle for the beam is

Ω =
π

4
θ2

FWHP (1.4)

and the directivity G compared to an isotropic radiator is the ratio of the isotropic solid

angle Ωiso to the transmitter’s solid angle Ωt.

G =
Ωiso

Ωt

=
16

θ2
FWHP

≈ 16D2
t

λ2
(1.5)

Inverse-square Loss

The power radiated from an isotropic transmitter becomes diluted as the spherical wave

spreads out as it travels away from its source. At range R from the transmitter, the area

covered by radiation is 4πR2 and the intensity is
Pisotropic

4πR2 . The same inverse-square falloff

holds for a directed radiator of power Pt, directivity G, and width θb; the beam power

spreads ∝R−2 and the beam diameter spreads to Db = Rθb. A receiving antenna (telescope)

at range R of diameter Dr collects a power equal to

Pr(R) =
GPtπD

2
r

4πR2
(1.6)

if it is within the beam diameter Db. It is advantageous to confine the beam to as small a

diameter as possible, as long as there is sufficient pointing precision and the illuminated area

at the target star includes the habitable zone. A transmitting civilization would presumably

have undertaken a galactic census to find nearby habitable planets or star systems before

embarking on a transmitting campaign, so target coordinates may be known to better than

1 AU. We will only assume knowledge of general habitable zones such that the beam diameter

at the target should be >2 AU. To get a sense of scale, based on the diffraction limit,

a 10 m (Keck-size) telescope could maintain a 10 AU beam diameter out to 1 kpc for

wavelengths ≤500 nm.
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Figure 1.2: The range for which a diffraction limited telescope illuminates a 10 AU spot size.

The beam diameter at the target depends on the range and telescope diameter.
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Pointing

Narrow beam forming is an advantage in terms of reducing the amount of wasted energy

that gets broadcast into space, but it requires high precision for the beam steering mechanics.

From a transmitter’s perspective, it is not enough to simply point at a target star. Following

the analysis by Howard, Horowitz, et al. [39], to illuminate a star (literally a moving target),

the transmitter must point to where the star will be once the signal arrives. This requires

knowledge of the target star’s position (θ0), range (R), proper motion (µ) , and radial velocity

(νr). The transmitter must aim at the sky position:

θ = θ0 + µ
2R

c− νr
. (1.7)

The positional, proper motion, and range precision required are

θ0 ± tan−1(Db/2R), (1.8a)

µ± tan−1(Db/2R)

R/(c− νr)
, and (1.8b)

R± Db

4
· c− νr

νt

. (1.8c)

where νt is the star’s transverse velocity. Let’s put some values into the equation to get

a sense of the magnitude of the precision needed for the range, proper motion, and radial

velocity. For a star at a range of 1000 ly, to aim a beam within 10 AU of the star requires

a positional accuracy of 33 mas and a proper motion precision of 33 µas·yr−1. The range

accuracy depends on a star’s transverse velocity and desired beam accuracy. Velocities

of <30 km·s−1 are common for nearby stars. For a transverse velocity of 30 km·s−1 and

10 AU beam accuracy, the range must be known to better than 0.5 ly, or 0.5% at 1000 ly.

The required accuracies aren’t technically unreasonable. The Hipparcos mission, run by

the European Space Agency (ESA) from 1989 to 1993, cataloged over 100,000 stars to an

accuracy of ∼1 mas. Its successor, Gaia, planned for 2013 to 2018, will measure the positions

of over 1 billion stars (∼1% of the galaxy!) at an accuracy of 7µas-300µas (depending on star

brightness) and distances to within 1% [44, pp. 321]. Knowledge of the required targeting

information is feasible with current Earth technology. A much older civilization would likely

have even more advanced capabilities.
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ISM Effects

Visible and infrared light is affected by nanometer to micron-sized dust grains in the

interstellar medium. For optical pulses, these grains cause light to be scattered and absorbed.

The distribution of dust grains is not uniform so the magnitude of the effect depends heavily

on the line of sight between two objects. Extinction is normally measured in magnitudes,

calculated as

A(λ) = 2.5 log
F0(λ)

F (λ)
(1.9)

where A(λ) is the magnitude of extinction at wavelength λ, F0(λ) is the flux before extinction,

and F (λ) is the observed flux. The remaining fraction, given the total extinction A(λ) is

fext(λ) = 10−
2
5
A(λ). (1.10)

Fluxes are measured using standardized sets of filters, called the “photometric system”,

with well-defined passbands. The specific filter used for a flux or extinction measurement

is designated by the letter subscript, e.g., AB for the magnitude of extinction in the B-

band centered at 442 nm or AV for the magnitude of extinction in the V-band centered

at 540 nm. Extinction in the galactic plane is highly variable and values range from 0–

2 mag·kpc−1 with a reasonable “average” being ∼0.7–1.5 mag·kpc−1 [13]. At high galactic

latitudes (>50◦), extinction can be much lower, with total extinction out to 1 kpc in the

range of 0.0–0.3 mag·kpc−1 [32]. Shorter wavelengths generally have higher absorption than

longer wavelengths, due to the size and composition of the dust grains. There are strong

peak in absorption at 217 nm (graphite pi-valence orbital?), 9.7 µm (silicate absorption

MgSiO3,FeSiO3, Si-O bond stretch), and 18 µm (O-Si-O bending mode) [21]. The amount

of preferential extinction for shorter wavelengths is sometimes characterized by a single

parameter RV, the ratio of the visual band extinction and the difference between the B and

V band extinction:

RV ≡
AV

AB − AV

. (1.11)

If the extinction is not wavelength dependent (gray), such as would be the case for large

interstellar dust grains, then RV→∞. Rayleigh scattering (∼λ−4), which gives the sky its

blue color, would give an RV≈1.2 [21]. Typical values of RV range from <2 for some high

galactic latitude sightlines to 5 or 6 for dense nebulae. Cardelli et al. [10] provides the
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Figure 1.3: Left: The “extinction law”, relative extinction curves for RV=2.0, 3.1, and 5.

Right: Fraction remaining after traversing 10 pc, 300 pc, 1 kpc, and 3 kpc in the galactic

plane. The black line (1 kpc*) is representative of a line of sight out of the galactic plane

(visual extinction of 0.1 mag·kpc−1). Data from Cardelli et al. [10] and Rieke and Lebofsky

[53]. Plot adapted from Howard [38].

empirically derived average “galactic extinction law”, parameterized by RV. Figure 1.3, on

the left, shows the relative extinction for three values of RV. For the diffuse ISM, the average

RV value is considered to be 3.1. On the right side of Figure 1.3, RV=3.1 has been used

to plot the extinction from 200 nm to 12 µm at various ranges, using an average visual

extinction of 1 mag·kpc−1 to represent a sightline in the galactic plane. The starred trace

(∗) indicates a visual extinction value of 0.1 mag·kpc−1, more indicitive of an out-of-plane

sightline. Out of the galactic plane, extinction can be low, even to intergalactic distances.

More detailed directional extinction values are modeled by Chen et al. [13] and plotted in

Figure 1.4. In-plane extinction out to 1000 pc is shown in the top of Figure 1.4 and total

visual extinction at 1 kpc is plotted on the bottom.

Assuming that 50% loss would be an acceptable limit, the expected range in the optical

region is about ∼1 kpc in the galactic plane. There seems to be a minimum around 8 µm

where the extinction is low enough to signal half way across the galaxy. If we are not

restricted to the galactic disk, extinction is much lower and optical frequencies would suffice
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Figure 1.4: Total visual extinction varies with galactic latitude b and longitude l. The model

shown here is from Chen et al. [13] and uses an analytic polynomial expression to compute

the extinction within 1000 pc in 36 cells of ∆l=10◦. Top: In-plane extinction magnitude

from 0 to 1 kpc for galactic longitude 180◦ to -180◦. Bottom: Total visual extinction at

R=1 kpc.
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for galactic latitudes >10◦. Given that the majority of stars in the galaxy reside in the thin,

∼300 pc galactic disk, out-of-plane range may be less important. In that case, if the distances

between civilizations are great, a longer wavelength would be more efficient (2–9 µm) as less

light is lost due to extinction. Photon energy in the infrared is lower, also leading to a

more efficient system. The benefits to going to longer wavelengths are eventually limited by

decreased telescope directivity which is ∝λ−2 (see § 1.2.2).

The last effect to consider is pulse dispersion. Dispersion of pulses can reduce the band-

width of a communication system by causing inter-symbol interference. In appendix M of

SETI:2020, Cordes explains the effect of the ISM on nanosecond optical pulses [23]. His

calculations show that the scattering of optical photons by dust grains causes delayed light

to arrive on two timescales. There is a close-in tail caused by forward scattering which ar-

rives seconds after the prompt pulse and a long tail from diffuse scattering that arrives much

later. The prompt pulse arrives unscattered (“ballistic”) hence it is not broadened in time.

Therefore, dispersion is not an issue at optical wavelengths as long as the pulse height is not

reduced below a receiver’s sensitivity threshold. The remaining fraction in the prompt pulse

is given by e−τ where τ is the total optical scattering depth.

Received Photons

The strength of the signal depends upon the number of photons received by the detector.

After traversing the distance R, the photons in the laser pulse Nsent are spread out over an

area R2Ω. The receiving telescope will collect the photons within the telescope aperture

π(Dr/2)2. Some fraction of photons are lost from beam diffraction fFWHM and to extinction

fext in the ISM. Also, the number of photons collected by the receiving telescope will be

reduced by the detector quantum efficiency and telescope mirror efficiency (QdQm = Q).

The number of photons produced at the transmitter is

Nsent =
Epulse

hc/λ
(1.12)

and the number of received photons is then

Nrec = Nsent ·
1

R2Ω
· π(Dr/2)2 ·Q · fFWHM · 10−

2
5
A(λ) (1.13)

=
EpulseD

2
tD

2
rQfFWHP

hcλR2
10−

2
5
A(λ) (1.14)
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The host star of the transmitter will also contribute to the number of photons detected

by the receiver. The number of stellar photons counted by the detector during the pulse

on-time τpulse is

N∗ =
P∗τpulse

hc/λ
· π(Dr/2)2

4πR2
·Q · 10−

2
5
A(λ) (1.15)

The power radiated by a star P∗ of temperature T in a band from λmin to λmax can be found

by integrating the blackbody radiation (Planck’s Law) over the surface area of the star:

Bλ(T ) =
2hc2

λ5

1

ehc/(λkBT ) − 1
(Planck’s Law) (1.16)

P∗ = 4πR2
∗

∫ λmax

λmin

dλ

∫ 2π

0

dφ

∫ π/2

0

dθ Bλ(T ) cos(θ) sin(θ) (1.17)

For simplicity, we assume that the power emitted in the band produces photons of the

transmitted wavelength λ. In the following example systems, a sun-like star will be assumed

(L⊙=4×1026, T=5780 K) and the band will be 300 nm and 800 nm for wavelengths within

that range and λ±500 nm otherwise. As an example, the power emitted between 300 nm

and 800 nm (sensitivity range of the photomultipliers used in the Advanced All-sky Camera)

is ∼2×1026 W. Ignoring extinction and detector loss, at a distance of 100 pc, the number

of photons arriving in a 10 ns window is 0.04 photons·m−2. For purposes of the example

systems, the signal-to-background (SBR) will be calculated as

SBR = 10 log

(
Nrec

N∗

)
= 10 log

(
16fFWHM ·

Epulse

Pstarτpulse

· D
2
t

λ2

)
.

(1.18)

1.2.2 Example Systems

Now that we have the equations to determine the number of photons received, we can

present a number of example systems. The systems start with a modest telescope size and

laser pulse energy (1 m and 50 kJ) of the scale that a small group of determined private

individuals might build, and increases to scales that are beyond what has been built today

but that we expect is possible with a concerted effort given national government-scale re-

sources. The modest sizes are fully compatible with current technological capabilities. The

larger sizes (100 m telescope, 500 MJ laser pulse) could be built in a few decades so they
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should be viewed as achievable by any sufficiently advanced civilization. For the largest sizes,

diffraction limited optics create very small beam widths which could be artificially degraded

if the required pointing precision cannot be achieved. The first sequence, systems 1–4, are

categorized by the sophistication needed to construct them. Their performance (Nrec) and

range R scale accordingly. At low ranges (<100 pc), a small, high-quality transmitter tele-

scope can be used with a large, low-quality (cheaper) receiving telescope. This is because

the beam diameter at the target Db should be about the size of the habitable zone (∼2 AU)

and at low ranges, where there is little extinction and short wavelengths can be used, a small

diffraction-limited transmitter is sufficient. At longer ranges (>100 pc), larger transmitters

are needed to increase directivity because of the additional beam widening at range and be-

cause longer wavelengths are needed to avoid interstellar extinction. In the second sequence,

systems 5–10, the wavelength has been varied to explore the effects of in-plane extinction at

1 kpc. The transmitter and receiver are 10 m, Keck-sized telescopes and the pulse energy

is NIF-sized at 2 MJ. All of the systems produce detectable numbers of photons (5–21) but

a wavelength of 800 nm gives the best compromise between directivity and extinction. Sys-

tems 11–16 show the relative sizing necessary for symmetrical systems at 1 µm for ranges of

100 pc, 1 kpc, and 10 kpc, both for sightlines in the galactic plane and toward the galactic

poles. Telescope sizes are adjusted to keep the number of received photons constant. At

1 µm, extinction is low for distances up to 1 kpc so the size difference between in-plane and

galactic pole systems is small. The extinction difference between directions is much higher

at 10 kpc, allowing for telescope diameters of half the size for the galactic pole sightline. The

systems 17–26 are “All-sky”-like in that the receiving telescope collector area and detector

quantum efficiency are on par with that of all-sky survey (see Chapter 4). Transmitter size

and pulse energy have been adjusted to give a sense of the scale needed for in-plane and

out-of-plane signaling for 100 pc, 500 pc, 1 kpc, 2.5 kpc, and 5 kpc.

From the example systems, it’s clear that even short range systems require more than

just an amateur level of expertise on the transmitter side. At only 10 pc, a diffraction-limited

primary mirror of 1 m is needed to achieve reasonable small pulse energies (∼50 kJ). The

beam width, in this case, would be 86 mas, which would require a very precise pointing

system, hardly in the amateur realm, such as adaptive optics or using a space-based system.

Larger pulse energies could be used, but this again pulls even a short-range system out of
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the amateur range. With enough resources to develop a Keck-sized transmitter and receiver

telescope mated to a NIF-sized pulse laser, respectable ranges can be reached. A transmission

distance of 1 kpc looks reasonable for those systems over the range of optical wavelengths.

Symmetrical systems of 30 m telescope diameter and 100 MJ pulse energy could communicate

half-way across the galaxy, especially if infrared wavelengths are used for in-plane signaling

to reduce extinction.

For our all-sky system of ∼2 m2 collecting area, a disproportionate effort is required of

the transmitting civilization. We expect, however, that any communicating civilization will

be much older and likely to have more advanced technology. The technological capability

required for reasonable ranges (a few 100 pc), though, is not beyond that which already exists

on Earth. Example systems 17 and 18 (100 pc range) assume transmitting telescopes of 4 m

diameter and 1 MJ pulse energy, well within human technological capabilities. For 500–

1000 pc at mid-optical wavelengths, the additional extinction in the galactic plane forces the

pulse energy to increase to an order of magnitude larger than currently exists but this should

not be seen as an upper limit. For the all-sky system to receive an in-plane transmission

from a few kiloparsecs, however would require substantially larger transmitting telescope

(50–100 m) and pulsed lasers (100-500 MJ).
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Table 1.3: Example Systems

Sys Transmitter Sightline Receiver

# λ Epulse Dt θFWHP Db R l b fext Dr Q SBR Nrec Type

1 .4µm 50 kJ 1 m 86 mas .9 AU 10 pc 0◦ 0◦ .99 4 m .3 4 35 Amateur
2 .5µm 100 kJ 4 m 27 mas 3 AU 100 pc 0◦ 0◦ .90 10 m .3 13 38 Pro-Am
3 1µm 4 MJ 10 m 21 mas 21 AU 1 kpc 0◦ 0◦ .70 15 m .3 26 82 Pro
4 8µm 100 MJ 30 m 57 mas 577 AU 10 kpc 0◦ 0◦ .83 30 m .3 28 110 Super Pro

5 .4µm 2 MJ 10 m 9 mas 9 AU 1 kpc 0◦ 0◦ 0.26 10 m .3 28 17.0 Keck
6 .6µm 2 MJ 10 m 13 mas 13 AU 1 kpc 0◦ 0◦ 0.46 10 m .3 24 20 +
7 .8µm 2 MJ 10 m 17 mas 17 AU 1 kpc 0◦ 0◦ 0.64 10 m .3 21 21 NIF
8 1µm 2 MJ 10 m 22 mas 21 AU 1 kpc 0◦ 0◦ 0.7 10 m .3 19 18 |
9 2µm 2 MJ 10 m 43 mas 43 AU 1 kpc 0◦ 0◦ 0.88 10 m .3 22 11 |
10 5µm 2 MJ 10 m 108 mas 108 AU 1 kpc 0◦ 0◦ 0.97 10 m .3 29 5 ↓

11 1µm 1 MJ 4.2 m 51 mas 5 AU 100 pc 0◦ 0◦ 0.97 4.2 m .3 9 39 Symmetric
12 1µm 1 MJ 4.2 m 51 mas 5 AU 100 pc 0◦ 90◦ 0.99 4.2 m .3 9 40 |
13 1µm 10 MJ 8.1 m 27 mas 27 AU 1 kpc 0◦ 0◦ 0.7 8.1 m .3 25 39 |
14 1µm 10 MJ 7.5 m 29 mas 29 AU 1 kpc 0◦ 90◦ 0.96 7.5 m .3 24 40 |
15 1µm 100 MJ 30 m 7 mas 72 AU 10 kpc 0◦ 0◦ 0.04 30 m .3 46 42 |
16 1µm 100 MJ 15 m 14 mas 144 AU 10 kpc 0◦ 90◦ 0.7 15 m .3 40 46 ↓

17 .5µm 1 MJ 4 m 27 mas 3 AU 100 pc 0◦ 0◦ 0.9 1 m .2 13 25 All-sky
18 .5µm 1 MJ 4 m 27 mas 3 AU 100 pc 0◦ 90◦ 0.98 1 m .2 13 27 type
19 .5µm 20 MJ 14 m 7 mas 4 AU 500 pc 0◦ 0◦ 0.59 1 m .2 16 16 |
20 .5µm 20 MJ 14 m 7 mas 4 AU 500 pc 0◦ 90◦ 0.94 1 m .2 16 25 |
21 .5µm 40 MJ 20 m 5 mas 5 AU 1 kpc 0◦ 0◦ 0.35 1 m .2 19 10 |
22 .5µm 40 MJ 20 m 5 mas 5 AU 1 kpc 0◦ 90◦ 0.9 1 m .2 19 25 |
23 .5µm 100 MJ 70 m 1 mas 4 AU 2.5 kpc 0◦ 0◦ 0.08 1 m .2 23 11 |
24 .5µm 100 MJ 70 m 1 mas 4 AU 2.5 kpc 0◦ 90◦ 0.77 1 m .2 23 105 |
25 .5µm 500 MJ 100 m 1 mas 5 AU 5 kpc 0◦ 0◦ 0.00674 1 m .2 30 2 |
26 .5µm 500 MJ 100 m 1 mas 5 AU 5 kpc 0◦ 90◦ 0.59 1 m .2 30 206 ↓
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1.2.3 Summary

To sum up, a pulsed optical communication system has the following characteristics and

advantages:

No Astrophysical Background No natural astrophysical emitters of nanosecond optical

pulses are known to exists.

Low Dispersion Optical pulses are not significantly broadened in time by the interstellar

medium, even for nanosecond pulses.

High Directionality Large optical telescopes can achieve very small diffraction limited

beamwidths because of the much smaller wavelengths in the optical band (compared

to radio). This makes optical systems more efficient for a given telescope size because

the broadcast energy can be focused on a target star rather than being lost into space.

Low Computational Requirements Radio systems require many calculations to search

through the band looking for spikes in the frequency domain. Signals can be drifting

in frequency as the radial velocity between transmitter and receiver changes due to

planet rotation and orbit. Fast fourier transforms must be calculated at many different

Doppler accelerations. Optical pulse detection needs very relatively little processing

power7.

No Optical Filtering Since optical detectors operate over an entire band, and pulses are

detected by counting photons in the band within a short time window, optical filtering

is not necessary. While filters may increase the signal-to-noise ratio when the transmit

wavelength is known, searching for a beacon whose wavelength is not known a priori

may render filtering undesirable, at least until a signal has been detected.

Simple Receiver Strategy Two fast photodetectors and a coincidence logic circuit can be

combined with large area, low resolution optics to make a simple optical pulse receiver.

7One radio SETI effort, SETI@HOME was recognized by the Guinness Book of World Records in 2001
as being the largest computation ever performed with 890×1018 floating point operations (1022 as of Feb,
2013) [31].
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Availability of High Power Lasers Lasers have experienced exponential growth in max-

imum output power since they were invented in the ’60s. At that time microwave

transmitters were available at high powers whereas lasers were not, leading to a con-

sensus of microwaves being preferred for interstellar signaling. The advance of lasers

to extraordinary powers demonstrates that lasers powerful enough to transmit over

interstellar distances could be constructed by a civilization with modest effort.

Radio Searches Unsuccessful Despite 50 years of searching the radio spectrum for signal

from extraterrestrial civilizations, no detections have yet been made. This may be the

strongest argument for searching in other bands. As shown by Townes [61], the optical

region may be just as promising as radio, based primarily on delivered energy efficiency.

Other consideration may tip the scale in favor of an optical or radio system. Therefore,

this justifies ETI searches at optical wavelengths.

1.3 Optical SETI Backgrounds

In a search for nanosecond astronomical pulses, any background sources of light and even

the detectors themselves can produce pulses that could be confused with a distant laser

source. These background sources need to be categorized and understood in order to design

a proper detection strategy that minimizes the effects of the background noise.

1.3.1 Astronomical

The allure of searching for a nanosecond pulsed beacon is in part because no natural

emitters of such short pulses are known to exist. This gives the signal an artificial quality

that makes it a technological indicator. A natural astronomical nanosecond emission would

need to be the result of a process confined to a region less than a foot in diameter but with

enough intensity to be seen light years away, or it would need to be coherent. Dravins et al.

[22] offer a number of possibilities for high-speed astrophysics including a) atmospheric in-

tensity scintillation of stars on the shortest timescales, b) plasma instabilities and the fine

structure in accretion flows onto white dwarfs and neutron stars, c) small-scale [magneto-]

hydrodynamic instabilities in accretion disks around compact objects, d) radial oscillations
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in white dwarfs ('100 – 1000 ms), and non-radial oscillations in neutron stars (≤100 µs),

e) optical emission from millisecond pulsars ('1 – 10 ms), f) fine structure in the emis-

sion (‘photon showers’) from pulsars and other compact objects, g) photo-hydrodynamic

turbulence (‘photon bubbles’) in extremely luminous stars, h) stimulated emission, e.g., syn-

chrotron radiation, from magnetic objects (‘cosmic free-electron laser’), i) non-equillibrium

photon statistics (i.e. non-Bose-Einstein distributions) from certain sources, and j) VLBOI

intensity interferometry over 1 – 100 km to search for fine structure (granulation) on stellar

surfaces. None of these phenomena are expected to produce nanosecond optical flashes, how-

ever. An additional possibility for a nanosecond scale astrophysics comes from the discovery

by Hankins et al. [34] of “giant” radio bursts with 1–3 ns time structure emanating from

the Crab nebula, 2 kpc away. They theorize that plasma turbulence from the relativistic

flow are causing the explosive collapse of wave packets to produce coherent radio emission

from source regions 60 cm in diameter. Though nanosecond radio pulses have been seen,

optical pulses of an astrophysical nature at that timescale are still unknown. Therefore,

astronomical nanosecond optical pulses should not be a background source. In fact, a side

benefit of searching for pulsed optical laser transmitters is the possibility of discovery of an

astrophysical phenomenon that has not been theoretically predicted.

1.3.2 Stellar Pileup

From a receivers perspective, the light from a pulsed laser’s host star would be a strong

contributor of background photons delivered to an optical detector. The steady stream of

photons from the star arrive at a rate dependent upon the star’s brightness. Let’s consider,

as an example, the photons that would be received by a 1 m2 telescope using a 20% quantum

efficiency photodetector when pointed at a sun-like star (visual magnitude mV = 12) 1000 ly

away. The star delivers ∼2× 106 V-band photons s−1m2 [50]. Not every photon is detected

however. Inefficiencies of the telescope optics and the detector quantum efficiency reduce

the number of photons that can be counted. Fast photodetectors, such as photomultiplier

tubes, register these detected photons, or “photo-electrons”, as individual pulses lasting a

few nanoseconds. The mV = 12 star would cause our photodetector with 20% quantum

efficiency to produce on average one photo-electron every 2500 nanoseconds. At such a
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low rate, the pulses from two photo-electrons would rarely, just by chance, overlap in time.

However, a star of visual magnitude mv = 5, visible to the naked eye, is bright enough to

produce about one photo-electron every 4 nanoseconds. Especially with brighter stars, the

random arrival of photons could result in multiple photo-electrons being produced in the

detector at nearly the same instant, conspiring to appear as a short burst of light.

Poisson statistics helps quantify the situation. Assuming a Poisson arrival rate r, the

probability rate of n photons arriving within the time interval τ is

R =
rτn−1

(n− 1)!
e−rτ (1.19)

Often one wants to know the probability rate of n or more photons arriving within a time

interval. The above equation simplifies to

R =
rnτn−1

(n− 1)!
(1.20)

for n or more photons when rτ � 1. The rise time of the detectors and electronics determine

the value of τ . The all-sky systems use photomultiplier tubes with rise times of 1–2 ns.

Assuming τ is 2 ns and the photo-electron arrival rate is 100 kHz (from the above example),

on average two or more photo-electrons will arrive within 2 ns at a rate of 20 Hz. An arrival

of three photons or more occur once every 500 seconds and every 89 days for four or more

photons.

How many photo-electrons are required within the detection time period in order to be

considered a possible pulsed laser source detection? The multiple photo-electron arrival rates

are an important factor to consider. If the threshold for detection in a single detector system

is placed too low, at say two photo-electrons, the system will issue a possible detection notice

20 times per second whenever a magnitude 12 star comes into view. To decrease the number

of false alarms, the threshold would need to be raised to the point that a possible detection

from stellar photons is a rare event. Of course, this reduces the system’s sensitivity to any

actual laser pulses that are below the threshold.

Using multiple detectors in coincidence is an alternative to increasing the threshold. This

technique is used in imaging atmospheric Čerenkov telescopes (IACTs) where the cameras

are usually a close packing of cylindrical photomultiplier tubes. As an example, in the

Whipple Telescope, three or more adjacent tubes must detect an amount of light over a
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set threshold to cause a readout of the tubes’ output by the systems’ electronics (a system

“trigger”). In the all-sky cameras, a two detector coincidence is needed to cause a system

trigger however, unlike IACTs, the sky image entering the all-sky camera’s entrance window

is divided onto two image planes using a beamsplitter. Photomultiplier tubes from each

image plane, aligned to view the same area of sky, form “coincident pairs”. The Advanced

All-sky Camera has an adjustable “coincidence window” τc during which over-threshold

pulses from both photomultiplier tubes in a pair must be received in order to trigger the

system. A trigger from the coincident pair is called a “coincidence”. The joint probability

of two independent events P1 and P2 both occurring is P1P2. So the probability of a photo-

electron arriving in the coincidence window τc in each of two independent detectors with

rates r1 and r2 is

Pc = r1τcr2τc (1.21)

The coincidence probability rate per unit time is

rc = r1r2τc. (1.22)

Continuing the above example (a sun-like star at 1000 ly) and assuming two detectors in

coincidence, the photo-electron arrival rate to each detector is cut in half to 50 kHz due

to the beamsplitter. The 2+ photon pileup rate for one detector becomes 5 Hz and the

coincidence rate for 2+ photon pileup in two detectors with coincidence window τc=2.5 ns

is (5 Hz)2 × 2.5 ns or twice a year.

By using two detectors in coincidence, the two or more photon pileup rate went from

50 kHz for a single detector to 62 nano-Hz. It should be clear from the rate calculations

that using a pair of photo-detectors in coincidence is a useful strategy for reducing the false

alarms from stellar photon pileup. It is equally important for reducing false alarms due to

detector noise, as is seen in the next section.

1.3.3 Photomultiplier Issues

Ideally, photomultiplier tubes produce output pulses at a rate proportional to the inten-

sity of light entering the entrance window. Even in a completely dark state, there will still

be some amount of output from the photomultiplier tubes. This output, called dark current,
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can be produced by secondary breakdown, thermionic emission from the cathode or dynodes,

ion feedback, and environmental ionizing radiation including muons and radioisotopes.

Most dark current comes from thermionic emission from the photocathode. The dynodes,

as well as the photocathode, have very low work functions so they emit electrons even at

room temperature. These emitted electrons will be accelerated and multiplied just like any

other photo-electron that results from a photon striking the photocathode. Extended-red and

infrared sensitive photomultipliers have especially high dark currents. They can be cooled to

reduce the dark current to an acceptable level for photon counting. Ion feedback is another

common source of dark currents. There is a residual amount of gas in the phototube after it is

evacuated. This gas can be ionized by collisions with electrons. Ionized atom will accelerate

towards the photocathode or first dynode stage, creating many secondary electrons when the

ion lands. These secondary electrons will be multiplied and cause a large output pulse. A

large input pulse of light can often cause ion feedback, causing an afterpulse to occur. Other

sources of dark current can come from glass scintillations that occur when electrons deviate

from their normal paths and hit the photomultiplier’s glass envelope. Field emission dark

current may result from a photomultiplier tube being operated near its maximum voltage.

This can be damaging to the tube if the supplied voltage becomes too high.

Corona discharge can cause dark current and electromagnetic interference (EMI) for de-

tectors that use very high negative cathode voltages. Breakdown of the electric field (caused

by sharp points, dust, etc. that ionize gas between the points) produces bursts of light by

visible corona. The light and EMI can couple into independent detectors causing correlated

output pulses. Corona breakdown was particularly high during the humid summer month

for an experiment using hybrid-avalanche photodiodes (HAPDs) operating with 7.5 kV neg-

ative cathodes [38]. The effect can be mitigated by dessicating the atmosphere around the

detectors and using “bake-out heaters” to remove absorbed moisture.

1.3.4 Cosmic Ray Air Showers

When very energetic particle in space reach the Earth and collide with atoms of the

atmosphere, they initiate cascades of particles called extensive air showers (EAS). The most

common initiators (called the “primary”) are protons and atomic nuclei, but electrons and
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gamma rays also take part. The cosmic ray flux is highly isotropic as most of the primaries

are charged particles that respond to, and get mixed by, galactic, stellar, and planetary

magnetic fields. The EAS cascades propagate through the atmosphere, creating particles

(electrons, muons, pions, gamma rays, etc.) as they go, until the energy of the initiator

is exhausted. The first interaction occurs high in the atmosphere. The cascade develops

until it reaches a maximum number of particles (∼7-8 km for a 1 TeV proton or gamma

ray) and then peters out as remaining particles have less energy to induce further reactions.

The number of particles at shower maximum is proportional to the initial energy of the

primary and the depth at maximum is related to the log of the energy [37]. Photon ini-

tiated EAS begin when the gamma ray passes close to an atmospheric nuclei, producing

an electron-positron pair from the gamma ray (γ→e−e+). The relativistic electron-positron

pair travel until they interact with nuclei in the bremsstrahlung process, creating another

gamma ray photon. That photon undergoes pair production and bremsstrahlung, multiply-

ing the number of photons and electron-positrons as the cascade progresses. Pions, which

decay to muons, are also produced, instead of an electron-positron pair, but the pion pro-

duction probability is much lower. Beyond shower maximum, the cascade rapidly ceases as

the electrons lose more energy to ionization, rather than radiation, and are quickly absorbed.

Hadron initiated EAS (protons and heavier nuclei) begin by the primary colliding with an

atmospheric nuclei, producing pions, kaons, and nucleons that have various decay chains. A

large component of the hadron cascades are charged pions, which decay into muons and neu-

trinos, and neutral pions which decay into gamma rays. The gamma rays from the neutral

pions cause electromagnetic cascades, as previously described. The muons created by the

charged pions penetrate to ground level because they effectively have an increased lifetime

in the atmosphere than in their rest frame due to their relativistic velocity. During the

charged pion’s lifetime, they interact with atmospheric nuclei causing hadron sub-showers of

more pions and nucleons. The hadronic particles multiply until the average particle energy

is less than the pion production threshold. The electromagnetic cascades from the remaining

neutral pions continue until their energy is expended.

Relativistic charged particles (electrons, positrons, muons, pions) in the EAS induce ra-

diation at optical wavelengths as they travel at velocities comparable to the phase velocity

of light in the atmosphere. The molecules in the atmosphere are polarized as the charged
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particle passes and emit photons in coherent wave-fronts as the molecules along the charged

particle’s path relax back to their resting state. This is called Čerenkov radiation [62]. Ex-

tensive air showers produce large amounts of Čerenkov radiation due to the many relativisitic

charged particles in the electromagnetic and hadron cascades. The minimum energy that a

particle must have to induce Čerenkov radiation is

Emin =
m0c

2√
1− 1/n2

(1.23)

where m0 is the rest mass of the particle and n is the index of refraction of the material in

which the particle is traveling. The emission angle of Čerenkov radiation is given by

cos θC =
1

βn
(1.24)

where β = v/c, the ratio of the particle speed to the speed of light. At relativistic velocities,

v ' c and the emission angle only depends on the index of refraction. In the atmosphere,

the emission angle is ∼1.3◦ at sea level, ∼1.0◦ at 8 km, and decreasingly smaller at higher

altitudes. The number of photons radiated per unit length can be calculated using the

Frank-Tamm equation:

dN

dxdλ
= 2παz2 1

λ2

(
1− 1

β2n(λ)2

)
(1.25)

= 2παz2 1

λ2
sin θC (1.26)

where α is the fine structure constant (≈1/137), and z is the particle charge number.

At sea level, an electron yields ∼30 photons·m−1 between 350 and 500 nm [63]. The

radiation is proportional to λ−2 but the intensity peaks in the ultraviolet-blue, beyond which

the index of refraction is reduced and the atmosphere becomes more absorptive. There is

significant power in the blue to red part of the spectrum; this Čerenkov radiation reaches

to the ground and can be detected by imaging telescopes. The amount of Čerenkov light is

proportional to the number of particles in the cascade, which is proportional to the energy

of the primary, so the Čerenkov light provides a good measure of the primary energy. The

Čerenkov radiation from a cosmic ray EAS is spread over a 20◦, but the bulk is produced

by the particle dense core of the cascade near the shower maximum. A second Čerenkov

component comes from particles that initiate electromagnetic cascades at low altitudes, in
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the shower tail, depositing Čerenkov light close to the ground near the impact point of the

shower core. A third and final component, particles that actually reach to the ground, can

cause Čerenkov rings to appear in telescopes that can image the Čerenkov light.

Charged Particle

ΘC

Cerenkov Angle

Wavefront

90°

Figure 1.5

The Čerenkov emission angle is small and the particles receive relatively

little lateral momentum compared to the longitudinal momentum of the

shower, so the Čerenkov light is strongly beamed in the shower direction.

The angular width of the image of the Čerenkov light is ∼1–2◦. Hadron initi-

ated EAS tend to have a broader structure due to the momentum transferred

to pions in strong reactions [37]. Most of the light lands on a 125 m radius

ground footprint for 1 TeV gamma ray showers and a somewhat larger radius

for a 1 TeV hadron showers. The density of Čerenkov photons on the ground

for these energies is ∼50 photons·m−1 [63]. Since the particles producing the

Čerenkov radiation, and the light itself, are both traveling near the speed

of light, Čerenkov light production from all levels of the EAS travels in a

thin pancake ∼2 m wide and arrives at the ground in a flash lasting a few nanoseconds.

These Čerenkov flashes have the short timespan of the order that we expect from a laser

transmitter. However, the Čerenkov radiation is spread over 1–2◦, so they can be distin-

guished from a laser pulse that would create an image given by the telescope’s point spread

function. Cosmic ray rates from the all-sky survey and simulations of EAS are discussed

further in § 5.2.5 and 5.3.

1.3.5 Muons

Muons are a common component of hadronic cosmic ray extensive air showers. Similar

to an electron but >200 times more massive, muons have a lifetime of 2.2µs before decaying

into an electron or positron and a pair of neutrinos. They are produced in air showers mainly

by the decay of charged pions. Electrons are also produced in air showers by pion decays,

but muons do not strongly interact with matter so they survive down to the lowest altitudes.

Muons can potentially cause false triggers in three ways:

a) by passing through the glass envelopes of a matched coincident PMTs pair and generating

Čerenkov radiation;
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b) by producing Čerenkov radiation directly on axis and in close range (<40 m) to the

telescope;

c) by producing Čerenkov radiation when passing through the beamsplitter or entrance

window.

The first type could occur if the muon is on a trajectory to encounter both PMTs in a

coincident pair. Passing through the glass envelope of the photomultiplier tube creates a

burst of Čerenkov radiation, much more than in the atmosphere owing to the higher index

of refraction of glass (∼1.5). From Equation (1.25), a muon produces 0.08 photons·mm−1

in the atmosphere at sea level (ν=1.0003) whereas in glass it produces 74 photons·mm−1

(250 nm to 900 nm). For a relativistic muon, the distance dPMT between the two PMTs

cannot be more than

dPMT ≈ cτc (1.27)

where c is the speed of light and τc is the coincidence detection time window. Otherwise, the

two pulses from the muon encountering both PMTs will not be counted as a coincidence. For

the closest pair of PMTs in the all-sky array (separation ∼80 mm), the acceptance solid angle

is ΩPMT'10−4 sr and the cross section for two PMTs is σPMTs ' 0.5 cm2. The energy thresh-

old for muons to produce Čerenkov radiation in glass (index of refraction ∼1.5) is ∼160 MeV.

At sea level, muons >200 MeV[4] arrive with a vertical flux Jµ'10−2 cm−2 · sr−1s−1. Using

the approximated values above the muon coincidence rate rµc would be

rµc = Jµ · σPMTs · ΩPMTs

' 16 yr−1
(1.28)

In the all-sky system, there are three other PMT pairs that have wider separations. They

would exhibit lower coincidence rates due to their increased separation. These coincidences

would occur whether the shutter of the camera is open or closed. Experiments with the all-

sky system show that with the shutter closed, coincidences at the 3–4 photo-electron level

occur less than once per 8 hours. Theoretically and experimentally, muons passing through

two PMTs, then, are not a significant source of triggers for the all-sky system.

The second type of possible false triggers caused by muons are “muon rings” (Figure 1.6)

created by the Čerenkov radiation of energetic cosmic ray muons at close range to the
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Figure 1.6: The Čerenkov radiation from muons produce rings in the image plane. Adapted

from Horan [37].

telescope. If the muon paths are parallel to the telescope axis and moving toward the

telescope with energy above the Čerenkov threshold, the Čerenkov radiation will be focused

by the telescope into a ring on the imaging plane, the angular diameter of the ring being

equal to the Čerenkov radiation angle. The total amount of Čerenkov light collected from a

muon ring is limited by the track length over which its light is accepted into the telescope

aperture. For the Čerenkov light to be captured by the telescope primary mirror, the muon

must be within L = D
2 tan θC

of the telescope (Figure 1.7).

A relativistic muon produces

Nγ = 2πz2α sin2 θC
D

2 tan θC

∫ λ2

λ1

dλ

λ2
(1.29)

photons over track length L which get focused into a ring on the image plane. The ring has

an angular diameter 2θC so the density of photons per unit angle is

ργ =
Nγ

2πθC
. (1.30)

The light produced over the track length may be incompletely collected by the primary

mirror if the impact parameter or angle of incidence is too great. In that case, a partial

ring would be seen on the image plane. We want to determine the maximum light density

from muon rings so we will consider a muon with a impact parameter of 0 m and 0◦ angle of

incidence. Assuming a constant atmospheric index of refraction, the ring would be infinitely
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thin (a line) on the image plane. The index of refraction does, however, vary with altitude

and wavelength which leads to a broadening of the ring. Multiple scattering of the muon,

telescope aberrations, and ionization losses also work to broaden the ring. We additionally

assume the broadening of the muon ring is less than the width of a camera pixel such that

all the light from a segment of the muon ring is captured by one pixel.

μ

Primary Mirror

L = D/2 tan ΘCΘC

D

Figure 1.7

The number of photons per track length is given by Equa-

tion (1.25) and is ∼105 photons·m−1 for a muon at sea level (250 nm

to 900 nm). For the all-sky camera pixel size of 1.5 arcmin and tele-

scope diameter of 1.8 m, a muon deposits ∼0.25 photon per camera

pixel. This should not be enough to cause a false trigger in the all-

sky camera as the trigger threshold is normally set to three or four

photo-electrons. Therefore muon rings can reasonably be neglected

as a trigger source.

Lastly, Čerenkov production by muons passing through the beam-

splitter or shutter entrance window should be considered. Since the

Čerenkov angle in glass is about 48◦, the geometry of the entrance window and photomul-

tiplier tubes precludes muon rings from the entrance window being imaged onto the tubes’

photocathodes. A muon traveling in the plane of the beamsplitter could produce Čerenkov

radiation that arrives in a matched pair of photomultiplier tubes, however, the rate at which

this occurs should be very low. The beamsplitter is mounted with its axis horizontal. The in-

tegral horizontal muon flux is about three orders of magnitude less than the vertical flux [12].

Additionally, the acceptance angle for a muon whose Čerenkov radiation reaches matched

PMT pixels is small, θpixel×θpmt ' 10×10−3 sr. Together with a cross-section of ∼8 cm2, we

calculate a muon striking the beamsplitter enters at an angle that couples into a matched

pixel pair every ∼200 hours of observations. The photon density is highest for the inner-most

PMT pair (Dsep=80 mm). The PMTs, angled at 45◦ to the beamsplitter, only accept the

Čerenkov radiation from a track length of wpixel sin 45◦ or 1.4 mm. We previously calculated

the Čerenkov photon production in glass to be ∼74 ph·mm−1. This results in 1.2 photons

in one photomultiplier tube pixel in a coincident pair and 0.4 photons in the other due to

reflection off of the beamsplitter’s silvered surface. This is below the normal trigger treshold,

therefore muons hitting the beamsplitter should not be a significant source of false triggers.
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1.3.6 Atmospheric and Anthropic

Any bright object in the atmosphere can cause false triggering. Suspects include air-

planes, helicopters, satellites, meteors, and even car headlights. Experience shows that

airplanes are the most problematic as they have strobe lights which create very intense

flashes. Strobe light flashes are typically long compared to photomultiplier tube rise times

and produce a signal consisting of many photo-electrons over a few microseconds. This is

much longer than what is expected from a far-off pulsed laser transmitter. A wide-field night

sky camera provides a way to identify when airplanes are in the field of view. See § 5.2.4 for

more details on airplane triggered coincidence events.

Far away lightning strikes are not considered to be an issue as they would appear on the

horizon at an elevation that All-sky does not observe. Additionally, observations are rarely

conducted when a storm is anywhere in the vicinity.
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Chapter 2

All-Sky Optical SETI

In order to search for the pulsed optical signals described in Chapter 1, in 2003, the

original all-sky optical SETI system was built. It was designed as a complement to a previous

targeted survey. The targeted survey ran for five years and observed 6,176 main sequence

A to M class stars within 100 pc. Although this is a significant number of stars to vet,

it is only a small fraction of the ∼105 stars within the 100 pc range, and even smaller

if one considers larger distances. The total sky area observed in the targeted survey was

also very small. Given the revelations of potentially 105 “nomadic” objects for every star

roaming the galaxy [59], the space between the stars may present an opportunity to receive

a signal. An attempt was made to choose target stars that have a higher likelihood of being

able to support life. Since life has not been discovered in other star systems, however, our

assumptions of what makes a good target type may be anthropically skewed. For these

reasons, the all-sky survey was developed to observe large areas of the sky without making a

priori assumptions about target habitability. Its telescope views a wide-field so that over the

course of a year, it can observe the entire night-sky, hence the all-sky moniker. A detailed

description of the legacy all-sky system has been presented in detail in Andrew Howard’s

PhD thesis [38]. The description of the observatory and its equipment below follows his lead

and adds updated information where changes have been made. This chapter is included to

give a general understanding the original all-sky system. The description of the advanced

all-sky system follows this chapter in Chapters 3 and 4. Targeted survey implementation

details can be found in Chip Coldwell’s thesis [15] and an analysis of the targeted survey
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results are in Howard et al. [39].

2.1 The All-sky System

The all-sky system consists of an observatory building with a roll-off roof, a telescope and

control room housed by the building, the all-sky camera (AsCam), instruments to provide

short test flashes, environmental sensors to monitor the weather, and a server computer that

provides a web interface so the system can be controlled remotely. On clear nights, an opera-

tor engages the automated observation routines which open the roof, calibrate the telescope,

choose an observation declination, begin half-hour observations that repeat throughout the

night, and park the telescope and close the roof before dawn twilight. When observing, the

1.8 m quasi-newtonian telescope focuses the night sky onto the AsCam’s beamsplit detector

array comprised of 16 pixelated photomultiplier tubes (8 tube pairs, 512 anode pairs total)

arranged on two 1.6◦ × 0.2◦ image planes. Paired photomultipliers view the same area of

the sky and the AsCam’s electronics wait for coincident pulses, which represent short flashes

of light, from the photomultiplier tube anode pairs. When a pulse is received in both de-

tectors at the same time, the AsCam electronics convert the analog pulse waveform to a

3-bit digital representation at 600 Megasamples-per-second and then notify the server that

a “coincidence” has occurred. The server collects all coincidences in a database along with

other state information of the instrument and observatory’s operations. The transit-mode

telescope is only driven in elevation, so on subsequent nights different declination stripes on

the sky are observed. Over the course of a night, stars in the AsCam’s field of view transit

across the photomultiplier tubes with a minimum dwell time of ∼48 seconds at the celestial

equator. Throughout the year, ∼200 clear nights are needed to observe all right ascensions

between −20◦ to +60◦ declination.
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Figure 2.1: In this transit survey, the sky drifts past the telescope’s field of view as the Earth

rotates. On succesive nights, the telescope is moved to a new declination.

2.2 Observatory

The observatory building is located at Oak Ridge Observatory in Harvard, MA, in a

rural wooded area 30 miles West of Boston. The building was built specifically for the all-

sky survey to house the 1.8 m all-sky telescope. It is a wood-facade, steel-truss structure

containing the telescope bay on the South end of the building and a control room on the

North side. The roof-supporting frame and the control room are built on a foundation

that is a separate concrete pour from the telescope’s mounting pier. On the mounting pier

in the telescope bay, the telescope has the freedom to move in altitude from 30◦ to 120◦.

Observations of low altitudes are made possible by a set of barn doors that are opened

using electric linear actuators. The observatory’s 3.5 ton roof is hung by 120 heavy duty

rollers that move within steel box track channels. The roof rolls North along an extended

steel structure to expose the telescope to the sky. A custom motor controller engages a

3/4 HP motor to pull the roof open and closed using a steel cable wound around a thick

stainless steel worm gear. The control room is fully enclosed, insulated, and temperature

controlled with electric heaters in the winter and a wall mounted A/C unit in the summer.

The observatory’s electronics are stationed in the control room, protected from the elements.

Remote observations are enable by a cable-internet connected server PC that communicates

and controls many observatory sub-systems. A server-connected power relay switch-box
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Figure 2.2: The wood-facade, steel truss observatory building has a roof that moves onto a

steel support structure to the North along enclosed box tracks to expose the all-sky telescope.

Barn doors open to the south for observations at low declinations. The Harvard clad object

within is the author. Photo Credit: Paul Horowitz.

controls power delivery to the telescope, camera, lights and other equipment. The control

room also houses three uninterruptible power supplies so that the server may close the roof

and shut down gracefully in the event of a power failure.

2.3 Telescope

The telescope is a f/2.5 quasi-newtonian design with a 1.8 m primary mirror and a 22.5◦

offset 0.9 m flat secondary. The primary is held in a frame constructed of 2′′ square steel

47



tubing and the secondary is suspended in front of the primary with a welded spider structure.

The camera is mounted outside the frame on the Eastern side midway between the primary

and secondary mirrors. The telescope pointed towards the Southern meridian, moving freely

on horizontal shafts along the East-West axis. Bearings welded in the frame allow the

telescope to rotate on horizontal shafts mounted to tubular steel risers atop the concrete

telescope pier. The telescope axis is about three feet off the ground and the interior of the

telescope pier is a pit that allows the primary end of the telescope to rotate below ground

level. A six foot diameter, laser-cut stainless steel ring is mounted to the telescope and

driven by a stepper motor in spring-loaded pressure contact to actuate telescope rotation.

Weights are added to the frame, behind the primary mirror, to balance the telescope.

The primary mirror is spherical and figured to a point spread function of 1–2 arcminutes,

comparable to the spherical aberration of the f/2.5 mirror. Higher quality optics are not

required because the size of the photomultiplier pixels are 2 mm, or about 2 arcminutes in

angular extent at the focal plane. While a parabolic mirror would have much less optical

aberration on-axis, the all-sky system needs a field-of-view of nearly 2◦. For an f/2.5 parabolic

mirror, at 1◦ off-axis the aberration from coma almost 2 arcmin, similar to the aberration of

a spherical mirror. Using a spherical mirror, as opposed to parabolic, simplifies the polishing

operation, thereby reducing its ultimate cost. The spherical mirror was the optimum choice

as it provided the same performance at a lower price.
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2.4 SETI Camera

The camera is composed of an optical front end – the shutter, beamsplitter, and photo-

multiplier tubes – and an electronics back-end that receives signals from the photomultipliers

over short cables. The electronics digitize the signals, filter the digital waveforms for coin-

cident pulses, and send acquired waveforms to a host computer for long-term storage. The

camera frame is 36′′ deep with a 27′′ × 24′′ cross-section and is constructed of 1.5′′ square

Rexroth aluminum extrusions. It is skinned with 1/16′′ aluminum plates that have gasketing

material where the plates join the camera to seal against dust and moisture. Internally there

are two compartments, one for the photomultiplier tube cage and one for the circuit board

rack. The circuit board rack has 10 blower fans and 10 exhaust fans to carry the heat from

the circuit boards to the walls. As the camera is sealed, heat is dissipated through large heat

sinks that are mounted on the internally and externally surfaces of the back and right-hand

side skin plates. To keep the internal camera air dry, a bottle filled with silica gel desiccant

is attached to the bottom skin plate of the camera through a 3′′ PVC pipe and light baffle1.

Power and communication enter and exit the camera through connections on the top rear

plate. An additional 5′′ square window port on the front right-side skin plate allows visual

access to the image plane without obstructing the entrance window.

2.4.1 Optical Front End

The light from the telescope enters the camera through an entrance window that keeps

the camera sealed. The light passes through a 60/40 beamsplitter angled at 45◦ to the light

path. Roughly half the light is transmitted through the beamsplitter onto a staggered array

of 8 photomultiplier tubes and half is reflected onto an identically arranged set of 8 photo-

multipliers in the PMT cage. The photomultiplier tubes are from Hamamatsu Photonics,

model H7546B-01 and are sensitive from 250 nm to 800 nm with a peak quantum efficiency

of 20% at ∼350 nm. Each photomultipler has an 18.1 mm square glass envelope with an

8 × 8 pixelated array of anodes which covers a total of about 0.2◦ × 0.2◦ of the sky. They

are not directly abuttable so they are spread out laterally (Right Ascension) and then offset

1a.k.a petahertz field annihilator
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vertically (Declination) on the image plane. The photomultipliers are mounted on two rows,

four across on a 0.6◦ pitch in right ascension and a 0.2◦ pitch in declination. This creates a

1.6◦×0.2◦ declination stripe of active photomultiplier area across a 2◦×0.8◦ field-of-view due

to the separation of the PMTs. The two sets of PMTs are aligned to view the same areas

of the sky. PMTs are mounted into female sockets on PMT circuit boards that are held by

Elma enclosure hardware within a custom machined aluminum, black-anodized PMT cage.
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Figure 2.4: These 3D models show the photomultipliers (black) mounted onto the PMT

circuit boards (green) mounted to Elma rail hardware with the custom machined PMT cage.

The beamsplitter, which is mounted in a machinable plastic base along the line of symmetry

between the 90◦ PMT image planes, is not shown here.
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Figure 2.5: The Hamamatsu H7546B photomultiplier assemblies use the R7600-M64 tubes

with an 8× 8 anode array. They are available with numerous different cathode chemistries;

the original all-sky system used the -01 multialkalai model [33].
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2.4.2 Electronics Backend

The camera electronics are split onto 8 daughterboards that plug into a main mother-

board. The daughterboards handle amplification, digitization, and waveform capture of the

photomultiplier tube (PMT) signals. The motherboard provides global signals like clocks,

analog reference voltage, GPS signals and power to the daughterboards. The photomultiplier

tubes plug into sockets on individual PMT circuit boards that also contain an adjustable

600 V to 900 V potted DC-DC power converter. Two flat ribbon cables, each contain-

ing 40 individual coaxial lines, connect the 64 photomultiplier tube anode signals, +15 V

power, and a high voltage sense line from a PMT circuit board to the daughterboards. The

daughterboards have four PMT cable connectors to provide connections to two PMTs, a

beamsplitter transmission-side PMT and a reflection-side PMT. The low voltage PMT sig-

nals are amplified by NEC 2710TB MMIC amplifiers with a fixed 30 dB gain and 1.5 GHz of

bandwidth. After amplification, the signals are fed into PulseNet, a full-custom integrated

circuit (ASIC) developed by Andrew Howard [38] specifically for the original optical SETI.

PulseNet performs 3-bit flash conversion at up to 1 Gigasample-per-second on 16 analog

input signals pairs. Each daughterboard has four PulseNets in order to handle 64 PMT

anode pairs. When a coincident pulse arrives on an input pair, PulseNet directs the data

stream from that pair into a 512 sample deep buffer for temporary storage. PulseNet acti-

vates an output pin that notifies a Silabs C8051 microcontroller on the motherboard that a

“coincidence” has occurred and the microcontroller serially shifts the data from the buffer

out of PulseNet. The microcontroller places the data in a dual-ported RAM that can also

be accessed on its other port over a legacy PC104 (ISA-like) bus. The PC104 bus spans the

motherboard and is controlled by a Diamond Systems PC104 single-board computer (SBC).

The SBC communicates with the 8 dual-ported RAM chips on the motherboard to acquire

the coincidence data and forwards it over ethernet to a database computer. PulseNet also

provides an “astronomy mode” where a counter is incremented for every sample that is over

one of the seven reference voltages. This astronomy mode is meant to count single photo-

electron pulses and be able to observe stars transiting across the PMTs. Only one input

pair and one reference voltage can be used in astronomy mode at a time. In addition to

the microcontroller and PC104 bus for data readout, the motherboard provides a mooring
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Figure 2.6: The original AsCam motherboard (top) connects eight daughterboards (bottom

left) to sixteen photomultiplier tubes (bottom right). Board schematics by Chris R. Laumann

and layout by Pratheev Sreetharan. Photo Credit: Paul Horowitz.

for daughterboards and some global signals. A clock distribution chip on the motherboard

provides a 300 MHz LVPECL clock signal to each daughterboard. GPS signals, a 10 MHz

clock and a one-pulse-per-second clock, are distributed to the PulseNets via the motherboard

connector. PulseNet has a GPS counter that uses these signals to attach a GPS timestamp

to every coincidence data message that gets read out by the microcontroller along with the

512 ADC samples. Reference voltages that set the flash ADC levels are produced by a DAC

on the motherboard and distributed to all daughterboards. The motherboard also provides

microcontroller readout of a humidity and temperature sensor.
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Figure 2.7: Gelfand Flashers I and II. Photo credit: Paul Horowitz.

2.5 Observatory Equipment

2.5.1 Test Instruments

Two test instruments are installed at the observatory to verify that short light pulses will

successfully be captured by the all-sky system. These are the Gelfand Flasher I (GFI) and

the Gelfand Flasher II (GFII). An end-to-end test with one of these instruments provides

assurance that the photomultiplier tubes are powered, the camera electronics are correctly

programmed, and coincidence events are being stored in the experiment database. The GFI

is located inside the AsCam, within view of all photomultiplier tubes. It uses a small blue

LED to present a ∼100 ns pulse bright enough to bring the PulseNet ADC output to the

maximum level. Normally, one pulse from the GFI will trigger all 32 PulseNets. A test flash

is performed at the start of every half-hour observation, using the GFI, so that subsystem

failures or programming errors are recognized before an observation begins. Because the

GFI is inside AsCam, tests can be performed and night, or even in the daytime with the

shutter closed. In contrast, the GFII is a external to the AsCam, located just in front of the

center of the primary mirror. A lens system and steerable mirror on the GFII allow a light

pulse from an LED to be projected onto any pixel in the AsCam’s PMT array. The GFII,

then, is able to selectively test individual pixel pairs, rather than the entire array, as with

the GFI. The GFII’s pulse is of much lower intensity than the GFI’s, so it can also be used

to compare the sensitivity variations of different photomultiplier tube pixels.
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2.5.2 Environmental Sensors

Remote and semi-automated operation of the all-sky telescope requires accurate knowl-

edge of the environment. The observatory employs multiple sensors keep the observer and

control software informed of the state of the observatory. Some of the sensor subsystems have

hardware enforced interlocks to prevent the observatory or equipment from being damaged.

Daylight Sensor

Daylight poses two dangers to the all-sky survey. First, were the roof to remain open

during the daytime, the sun could reflect off the telescope primary mirror and be focused

onto an inner wall of the observatory building, a potential fire hazard. Second, as the

photomultiplier tubes can be damaged by exposure to sunlight, observations should not

be started during daylight hours. For these reasons, a light sensor connected to the roof

controller provides the system with a binary indication of day or night. The sensor consists

of a wavelength-shifting fiber, positioned on the North wall of the observatory building, and

a photodiode connected to the end of the fiber. The photodiode is read by the roof controller.

Sensitivity can be adjusted via a trimmable comparator setpoint. The roof controller will

not allow the roof to open and will force closure of the roof after a timeout period of one

minute when daytime is sensed.

PMT HV Lockout Sensor

Too much light can be damaging to the photomultiplier tubes, especially when powered,

so a photodiode is placed near the photomultiplers to measure the average light level. If the

light level exceeds an adjustable threshold, the power relay to the PMT +15 V supply is

de-energized, preventing PMT damage.

Rain Sensor

Rain, sleet, and snow are common threats to buildings with removable roofs and sensitive

electronics inside. The observatory has two rain sensors to detect falling moisture. The rain

sensors consist of two inter-digitated copper strips to which a low voltage is applied across.

Moisture on the surface of the sensor allows current to flow between the copper strips. The
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Figure 2.8: The observatory has two rain sensors, one of which will force roof closure if rain

is detected. Photo Credit: Paul Horowitz.

current change is sensed by the roof controller. One rain sensor is located outside on the

West wall of the observatory, and the other is within the telescope dome, only exposed to

the elements when the roof is opened. The roof controller will force the roof to close after a

timeout period if moisture is sensed from the dome rain sensor. The outside rain sensor is

not wired to force roof closure as snow often falls onto the sensor when the roof is opening

in the winter.

Weatherstation

A Davis weatherstation collects traditional weather facts such as outside and inside tem-

perature, wind speed and direction, barometric pressure, and rain volume. These environ-

mentals are periodically read and stored in the all-sky experiment database. The weather-

station consists of a base unit with LCD display, mounted in the control room, that connects

serially to Costas (server PC) and the wireless, solar-powered unit that is mounted outside

on a pole at the end of the building’s South-East roof rail.

PTZ and Web Cameras

Web cameras are strategically mounted around the observatory building for visual indi-

cation of the observatory state. The four web cameras have views of the control room, the

telescope from behind, the telescope from the front, and the area outside the entrance to the
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Figure 2.9: A wintery scene of the observatory from the pan-tilt-zoom IP security camera.

building. Camera images are acquired and stored on Costas using a four-input video-capture

card.

A pan-tilt-zoom (PTZ) IP security camera is located in a separate building ∼200 ft from

the all-sky building. The PTZ camera looks through a window with view of the all-sky

building and the surrounding area. It provides a live image from the observatory at about

one frame-per-second.

GPS

A Symmetricom GPS receiver provides a time reference to Costas (the observatory’s

server computer) and to the AsCam so that events can be timestamped with a high quality

time reference. The GPS receiver is connected serially to Costas and sends timestamps

in a coded text stream. The GPS timing reference 10 MHz and 1 PPS clocks signals are

distributed to the AsCam using custom copper-to-fiber-optic transmitter at the GPS receiver

and a matching fiber-optic-to-copper receiver at the AsCam. The GPS receiver antenna is

mounted atop the pole to which the outdoor wireless weatherstation unit is mounted.

2.5.3 Networking

The network at Oak Ridge Observatory consists of a Charter cable internet connection, a

VPN that connects to the Harvard internal network, a Cisco 851 router to isolate the all-sky
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building from the rest of the Oak Ridge network, an Axis 214 PTZ IP security camera, and

a number of ethernet enabled seismographs. Inside the all-sky building, Costas connects to

the all-sky camera through one ethernet port and to the Cisco 851 through its other ethernet

port. The camera connection is run through 10 Mbit/s ethernet-to-fiber converters. Three

uninterruptible power supplies (UPSs), which support the roof controller, Costas, telescope

drive, and other critical systems during a power outage. One UPS is connected serially to

Costas to enable automated shutdown in the event of a loss of mains power.

2.6 Observatory Control

A PC running Ubuntu Linux is used to enable web control of the AsCam, telescope, and

other observatory equipment. Named after Costas Papaliolios (1931-2002), this PC located

in the observatory control room acts as web and database server. To perform observatory

control operations, Costas must be running the oseti.py python application, which serves

up the all-sky web interface (Firefox and Chrome compatible). The python application and

web interface was developed by Jason Gallicchio, Andrew Howard, Steve Howard, and the

author.

From the web interface, the roof can be opened, the telescope can be positioned, and the

AsCam can be programmed. Most observatory infrastructure can also be controlled from

Costas using its array of serial ports, USB ports, and ethernet connection. Figure 2.10 shows

the interconnections between the server and observatory equipment.
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Figure 2.10: Costas connects to many instruments in the observatory to enable completely

remote observations.
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2.6.1 User Interface

Observations are controlled through a web interface which is provided by Costas through

the oseti.py application. The interface consists of a viewer frame and many subpanels

(Figure 2.11). The frame provides a snapshot of commonly needed information such as the

sidereal time, temperature, humidity, and telescope and roof positions at the top of the

frame. A sidepanel on the left allows the user to open different subpanels. Subpanels are

listed by category; for example, the roof and telescope subpanel in the observatory category

has buttons and input forms for opening and closing the roof and moving the telescope to

the desired elevation. A weather forecast panel, for convenience, provides a moving radar

and satellite image from Accuweather.com. The most often used panels are for DAC, PMT,

and PulseNet programming.

An important feature of the user interface is for viewing the results of a night’s observa-

tions. This is accomplished through the use of the “event view” panel. During observations,

the state of the camera, telescope, observatory and accompanying hardware is recorded in a

database whenever an “event” occurs. Many different types of events are defined. Examples

of events include a change to the programming state of the camera, receiving a position up-

date from the telescope encoder, or the stoppage of an observation. All of these events may

be inspected by using the event view panel. The “Coincidence” events are recorded every

time the camera is triggered and these are the events of most interest after an observing run.

The Coincidence events, which consist of sampled data from a pair of PMT pixels, will be

displayed textually upon the click of a mouse and also graphically in the “Event Display”

panel.

Nightly observations can be automated from the user interface. The “Automation” sub-

panel offers input controls for setting an observation schedule, scheduling downtime, and

viewing scheduled observations. When placed into “automatic observation” mode, a state

machine is enabled which goes through a checklist for opening up the observatory, readying

all electronics, and determining the next observation declinations if none are already set,

and closing the roof and telescope before dawn twilight. To aid in planning observations,

completed, scheduled, and current observations can be explored on an interactive skymap in

the “Stars” subpanel.
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Figure 2.11: From the user interface web page, the experiment can be controlled remotely.

We see in this image a quick view of observing information along the top, links to panels on

the left, and three open panels–the power control panel, the roof and telescope panel, and

the skycam panel.
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2.7 Limitations

The all-sky system is a novel design but, being the first of its kind, it has a number of

drawbacks. Some of the drawbacks were intentional trade-offs made to reduce costs, some

are related to design errors, and others became apparent only after observing operations

began. This section lists the issues with the all-sky system that could be improved.

2.7.1 Spectral Sensitivity

Longer optical wavelengths are more appealing for interstellar signals if the distance

between civilizations is great. This is because there is three to four times less extinction,

on average, at 1 µm than there is at 550 nm. The mid-infrared is even more advantageous

with ∼50 times less extinction at 8 µm. For ground based observations, we are limited by

the atmospheric absorption in the infrared. As a practical matter, we are also limited by

detector performance, cost, and convenience. For the all-sky survey, a large active area is

desirable, but the pixel size must be limited to reduce the night sky background and cosmic

ray sensitivity. A fast rise time (< 2 ns) is important for the same reasons. The sweet spot for

price and performance at the commencement of the all-sky survey were the H7546B-01 multi-

pixelated photomultiplier tubes from Hamamatsu. These PMTs do not need to be cooled to

reduce dark count (as contrasted with IR-sensitive detectors), adding to their convenience

factor, but they only offer quantum efficiency above 5% between 300 nm to 600 nm. Since

the original all-sky camera (AsCam) was built, Hamamatsu’s manufacturing process has

improved and the H7546 PMTs are available with extended red sensitivity (up to 900 nm)

and 5% quantum efficiency out to 850 nm. Improved sensitivity at longer wavelengths would

make the all-sky survey a novel experiment again and extend the range and number of stars

surveyed, especially in the galactic plane where extinction is higher.

2.7.2 One Sample Buffer Per PulseNet

Owing to the available silicon, the PulseNet ASICs were designed so that when one of

its 16 flash ADC channel pairs received a coincident pulse, only that one channel pair was

switched into a sample buffer to store the trigger waveform. Hence, only the waveform from
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that channel pair is recorded and the information in the other 15 pairs is lost. A situation

where this information could be important is with a cosmic ray Čerenkov flash. The Čerenkov

flashes from cosmic ray induced extensive air showers (EAS) generally subtend 1–2◦. This

imaging information is traditionally used in very high energy gamma ray astronomy to

distinguish gamma rays induced EAS from hadron induced EAS but it can also act as an

anti-coincidence for pulsed optical SETI. A system with full buffer capture for every pixel

pair would enable some cosmic rays to be distinguished from distant laser pulses.

2.7.3 Sample Depth

The sample buffer for PulseNet is 512 samples deep, enough room to capture 853 ns

at the normal operating sampling speed of 600 Megasamples-per-second (MSPS). This is

more than enough samples storage for a 1–10 ns pulsed laser beacon waveform of the type

proposed in Chapter 1. A solitary pulse is not a convincing pulsed laser signature, however.

Many different noise sources (see § 1.3) can create nanosecond pulses in fast photodetectors.

Multiple pulses would need to be received to make a positive detection. Therefore, a long

sample buffer is needed to record for as long as possible after a triggering pulse in order to

capture any subsequent pulses. Additionally, some noise sources, airplane strobe lights for

example, create flashes of light microseconds long and bright enough to trigger the camera.

These noise sources could more easily be identified and characterized if the entire microsecond

flash can be captured.

2.7.4 Triggering

The PulseNet ASICs can only be triggered by an over-threshold coincident pulse on

paired flash ADC inputs. There is no accomodation made for an external trigger. This

independence is limiting in that if a flash of light is bright enough to trigger only one pixel,

the waveform is only available from that pixel and no others. The adjacent pixels may carry

information about the brightness or shape of the image which can be used to distinguish

noise sources. For example, a cosmic ray Čerenkov flash that is just bright enough to trigger

one pixel will appear to be consistent with a distant laser pulse. The extended 1–2◦ structure

of the Čerenkov light will go unnoticed. If a system-wide trigger was implemented, where
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a single pixel coincidence would trigger waveform readout for all pixels in the array, weak

Čerenkov flashes could be distinguished from possible pulsed laser sources.

2.7.5 Sampling Rate

The rise time of the photomultipliers used in the all-sky survey is 1-2 ns so the sam-

pling rate for PulseNet was targeted for 1-2 gigasamples-per-second (Gsps). While some

production PulseNets can sample at 1 Gsps with increased power supply voltage, the all-sky

system is conservatively operated at a sample rate of 600 Msps for all PulseNets. A higher

sampling rate is desirable in order to match the bandwidth of the detectors. At 600 Msps,

some single photo-electron pulses can be missed. In addition, faster sampling offers better

time resolution and possibly the ability to compare the time structure of multi-pixel triggers.

2.7.6 Communication Bandwidth

In the original all-sky camera, readout of coincidence data was accomplished using a

microcontroller to serially shift the data samples out of the PulseNet sample buffer. The

microcontrollers sent the data to dual-ported RAM which was addressable on a legacy ISA-

bus using PALs for address decoding. A single-board computer (SBC) connected to the

ISA-bus of the camera’s motherboard, read the data, and sent it over ethernet to a database

computer. The total trigger dead-time from this low bandwidth connection was on the order

of hundreds of microseconds. The dead-time could have been lowered by increasing the

bandwidth to the camera. This would be especially important if a system-wide trigger were

implemented and the sample depth was increased since a coincidence event would contain

much more data.

2.7.7 Astronomy Functionality

Counters were added to PulseNet so that the arrival rate of single photo-electrons could

be counted, giving an indication of the average night sky background light level. The hope

was that the telescope pointing could be calibrated by using these counters in an “astronomy

mode” to register the stars transiting the photomultiplier tubes. The astronomy functions
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were fairly limited however. Only one out of the sixteen PulseNet channel pairs could be used

in astronomy mode at any one time. The acquisition a one second integration for every pixel

in the camera takes a minimum of sixteen seconds. At least two cycles are needed in order to

calculate a difference between pixel counts, and for the all-sky system, the minimum transit

time of a star crossing a photomultiplier tube is 48 seconds. The precise timing needed

to capture a star transit made the task very difficult. The astronomy counters increment

for every sample that exceeds the selected reference voltage, so it is not strictly counting

photo-electron pulses. Additionally, the threshold bias offsets across PulseNets can be up to

50 mV or more, making counting of pulses below 50 mV impossible for some channels and

inconsistent for others.

To address these shortcomings of the original all-sky system (AsCam), we designed and

built a second-generation pulsed optical all-sky SETI system, described beginning in the

next chapter. The new system implements the PulseNet ASICs in FPGA hardware. The

FPGA design of the new implementation, called PulseNet-V, is detailed in Chapter 3 and

the full second-generation camera implementation, the Advanced All-sky Camera (AdvCam)

is described in the following chapter, Chapter 4.
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Chapter 3

PulseNet-V

The main engineering challenge of the all-sky survey is to digitize and record 1024 analog

voltages, the photomultiplier tube anode outputs, at gigasample per second speeds. The

most straightforward solution to that end, using commercially available analog-to-digital

converters, at a price of ∼$200 and consuming 2 watts each, would result in an overly large,

power hungry, and expensive system. When the all-sky survey was first conceived circa

1999, the most promising solution was to build a custom integrated circuit (IC) to perform

the analog-to-digital conversion and recording task. The result was PulseNet, an IC able

to convert 32 channels (16 pairs) at up to 1 gigasample per second and hold 512 samples

of any one channel pair when triggered [38]. This was enough to get the survey started,

but after years of use, its limitations became more clear. A commercial part was eventu-

ally found which could be programmed to meet the specifications of the original PulseNet.

PulseNet-V, built on a Xilinx Virtex-5 field programmable gate array (FPGA), is the next

generation digitizer and signal processor for the all-sky survey. A unique feature is the use

of groups of LVDS input pairs to form low resolution, high-speed flash ADCs. A single

FPGA can accommodate 32 such ADCs, with demonstrated simultaneous conversion rates

up to 1.5 gigasamples-samples-per-second. PulseNet-V has many more programming op-

tions compared to the previous PulseNet ASIC. For example, the ADC channel pairs can be

unlinked to disable the coincidence requirement in the trigger hardware, and the number of

post-trigger samples can be changed from 0 to 65,534 (however the number of total samples

per channel is always 8,192). Because the Virtex-5 is a commercial part, it was available
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immediately and did not require a long IC design effort by us. Most importantly, as the

Virtex-5 is an FPGA, it is inherently re-programmable allowing design changes which can

be applied incrementally. The operation of the PulseNet-V can be frequently changed as

needed from our Cambridge laboratory to allow new modes of operation to be explored.
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Table 3.1: PulseNet-V At-A-Glance

Description
The Pulsenet-V is an FPGA design for pulsed optical SETI. It combines 256
LVDS inputs into thirty-two, 8-level flash ADCs. Samples are stored in 8k block
RAM circular buffers. Coincident pulses on channel pairs cause the digitized
waveform in block RAM to be uploaded to a host computer over ethernet.

Capabilities
32 flash ADC channels
Sampling up to 1.5 Gsps, 8 level, 3-bit resolution
8192 sample depth per channel
2 pulse counters per channel

Triggering
Channels can be independent or linked for coincidence triggering
Adjustable coincidence window
Adjustable number of post-trigger samples (0–65,534)
External trigger input and output for system-wide triggering

FPGA Design
Microblaze processor with PLB peripherals
PulseNet core peripheral with 68 config registers

Hardware
Xilinx Virtex-5 FPGA

1153-pin BGA package, 1 mm pitch
800 single ended I/O or 400 differential
17k logic-blocks, 4.6 Mbits block RAM

Communication
10/100 Mbit Ethernet MAC
I2C bus
RS-232 serial

Configuration
FPGA configured over JTAG or with parallel flash at power-up
FPGA configuration and bootloader stored in parallel Flash
Flash programmed indirectly over JTAG or by FPGA within Linux or U-boot

Software
OS is a Linux kernel running on Microblaze
SETI daemon responds to control messages over ethernet
Astronomy daemon continuously sends pulse counts over UDP
Telnet interface for command-line access

Power
2.8 A @ 1.0 V
2.4 A @ 2.5 V
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3.1 Design Overview

PulseNet-V’s main function is to digitize 16 analog signal pairs, filter the digital streams

for coincident pulses, store the coincident pulse waveforms, and transmit the waveforms along

with a timestamp to a waiting database server. A flash analog-to-digital conversion topology

is used for digitization of each analog input at speeds of up to 1.5 Gigasamples-per-second.

For each channel, eight LVDS input pairs combine to form an 8-level flash converter. The

positive pin pair is the analog input and the negative pin is one of eight reference voltages

VREF(7 : 0). The digitized output from the flash converters are sent to both a triggering

circuit and a block RAM circular memory buffer (8192 samples deep) for storage. The

triggering circuit monitors a pair of flash ADC channels and waits for the pair to exhibit

outputs levels greater than or equal to a pre-selected VREF level within an adjustable time

window of two to ten clocks. A valid trigger starts a state machine which allows digitization

to continue for an adjustable period of time to fill the circular buffer with post-trigger digital

samples. The state machine then stops conversion for all input pairs and notifies a processor

via an interrupt signal. The processor runs an interrupt service routine that bundles together

the conversion data held in the circular buffers from all 16 input pairs and transmits that

data over Ethernet to a database server. Most of this activity occurs within the pulsenet

core, which is a peripheral of the Microblaze processor. The pulsenet core communicates

with the processor over the processor local bus (PLB). Configuration registers that control

the pulsenet core’s adjustable settings such as post-trigger samples and coincidence window

are available as memory mapped registers on the processor local bus.

A second function of PulseNet-V is to use counters to keep track of the rate at which

pulses are arriving on each of its 32 analog inputs (16 pairs). The pulses represent photons

arriving at the photomultiplier tubes. Since the pulse rate is proportional to photon arrival

rates, the pulse counts measure the intensity of light hitting the PMTs. The level of night sky

background and starlight can be acquired for each photomultiplier tube anode, thus forming

a crude astronomical sky image. The counters represent the “astronomy mode” feature of

PulseNet-V. The pulse counting block consists of a 24-bit counter that is incremented for

every clock sample that is above one of the eight selectable VREF’s. Alternatively, the counter

can be configured to increment for every positive or negative edge. A timer counter causes

71



the 32 pulse counter values (one per channel) to be transferred a set of processor readable

registers every 0.75, 2, 4, or 10 seconds. A program running on the processor reads the pulse

counter values periodically and transmits them over Ethernet to a database server.

Proprietary modules of the PulseNet-V design are coded in VHDL (VHSIC Hardware

Description Language) and are targeted for the Xilinx Virtex-5 1153-pin LX110 FPGA

(field programmable gate array). FPGAs are reprogrammable integrated circuits that con-

tain many general purpose logic gates (configurable logic blocks), RAM blocks, PLLs, I/O

blocks, and other digital elements but the interconnections between elements is left to the

designer. Depending on the connections, anything from a simple AND logic circuit to a

complete processor with floating point instructions and a memory management unit could

be constructed out of the available on-chip digital elements. The Virtex-5 used here (part#

:XC5VLX110FF1153-3) has 17,280 configurable logic blocks (CLBs), 4,608 kbits of available

RAM blocks, 6 clock management tiles (CMTs) each containing a PLL, and 800 single-ended

I/Os. Its selection was mainly based on needing a minimum of 256 differential I/O pairs so

that thirty-two 8-level flash ADC converters can be formed. Having thirty-two channels al-

lows the PulseNet-V to fit the same motherboard/daughterboard form factor of the original

all-sky system. Secondary considerations required that there be enough logic space available

for a Microblaze soft-core processor and at least 64 block RAMs for the flash converter sam-

ple memory. These secondary considerations were more than accommodated by choosing

the smallest LX device in the 1153 ball-grid package size. The processor and pulsenet core,

which includes the flash conversion, triggering, and pulse rate counters as describe briefly

above, are constituted from these digital elements (via VHDL code), but the pulsenet core

is just one of many peripherals attached to the processor’s bus. Additional peripherals in-

clude the Ethernet MAC, external flash memory controller, synchronous DRAM controller,

interrupt controller, I2C controller, system timer, and others. A custom Linux kernel, with a

specialized driver module for the pulsenet core, coordinates the processor and its peripherals

while two user code applications, one for interacting with a database server and one for

transmitting pulse counts, run on top of the Linux kernel during normal operation.

This chapter describes many different hardware and software elements of the PulseNet-V

design. Hardware signal names (VHDL and PCB layout) will use a sans serif font, as in ram -

counter and VREF. Signal widths are specified in parenthesis after the signal name with an
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intervening colon, e.g. ram counter(12:0), and the nth bit of signal ram counter is referred to as

ram counter(n). The signal names of registers with multiple outputs are given q designations

followed by the output number. This only occurs for the input dual-edge registers that

have output 1 corresponding to the positive-edge sampled input (ddr int q1) and output 2

corresponding to the negative-edge sampled input (ddr int q2). Finally, filenames, VHDL

module names, and hexadecimal and binary values will appear in a typewriter font, as in

pnet ram.vhd, 0x9000000C, and 1001b.

3.2 Pulsenet-V Architecture

Pulsenet-V is a microprocessor based design, consisting of a single-core parameterized

soft-core processor, a memory bus for processor instructions, a memory bus for processor

data, and numerous peripherals connected to the processor local bus (PLB). Many PLB

peripherals are provided by Xilinx for users as part of the Xilinx Platform Studio (XPS),

the software program used for development of designs utilizing Microblaze, a soft-core pro-

cessor developed by Xilinx for use in FPGAs. The Microblaze processor and various PLB

peripherals are used in the Pulsenet-V design. Microblaze and all the PLB peripherals of

Pulsenet-V are stock Xilinx modules with the exception of the pulsenet core. The custom

logic needed for the flash ADCs and pulse rate counting is packaged into the pulsenet core.
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Figure 3.2: The block diagram of PulseNet-V includes the Microblaze processor, the

pulsenet core VHDL module, ethernet MAC, DDR SDRAM controller, and various other

modules.
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3.2.1 Microblaze

Pulsenet-V is based around the Xilinx provided Microblaze soft-core processor. The

Microblaze processor can be customized to employ a range of functionality including integer

multiplication and division, single or double-precision floating point units, a barrel-shifter,

math and bus hardware exceptions, instruction and data caches, and various levels of memory

management. A more complex processor utilizes more FPGA resources and will have a lower

maximum operating frequency. For this design, higher speeds are desired but a minimum

amount of functionality is required to support the Linux kernel. As such, a full virtual

memory management unit is included in the Microblaze design. Instruction and data caches

(2kB, 4-line) are enabled for all DDR SDRAM accesses. Other options selected include

a barrel shifter, integer multiplier and division units, and debug module interface, but no

exception handling is included. Exception handling was found to significantly decrease the

maximum attainable clock frequency. See Table 3.2 for further detail. Microblaze is a

Harvard architecture and requires dedicated connections to data and instruction memory

spaces. Separate local memory busses for these connections are routed to two ports of

the Multi-Port Memory Controller (MPMC). Peripherals communicate with the Microblaze

processor over the Processor Local Bus. The PLB has a 32-bit wide address bus and 32-bit

wide data bus.
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Table 3.2: Microblaze Options

Microblaze

The Microblaze is a paramaterizable soft-core processsor. The following options were used for the PulseNet-V design:

Cache Instructions Exceptions
Instruction 2kB, 4-line Barrel Shifter Yes Floating Point No
Data 2kB, 4-line Floating Point Unit Basic Integer Divide No
I-Cache Writes Enabled Integer Multiplier 32-Bit Data-side PLB No
D-Cache Writes Enabled Integer Divider Yes Instruction-side PLB No

Machine Status Register Yes Illegal Instruction No
Pattern Comparator Yes Unaligned Data No

Memory Management Optimizations Misc
Type Virtual Area Optimized No Processor Ver. Reg None
D Look-Aside Buf 4 Branch Target Cache No BRAM Usage 5
I Look-Aside Buf 2 DSP48E Usage 5
MMU Reg Access Enabled Hardware Ver. 7.30.b
Protection Zones 2

Table 3.3: Pulsenet-V Address Table.

Peripheral Base High Size Bus

Microblaze Data RAM 0x00000000 0x00007FFF 32kB LMB
Microblaze Instruction RAM 0x00000000 0x00007FFF 32kB LMB
pulsenet bram 0 0x00010000 0x00013FFF 16kB PLB
pulsenet bram 1 0x00014000 0x00017FFF 16kB PLB
pulsenet bram 2 0x00018000 0x0001BFFF 16kB PLB
pulsenet bram 3 0x0001C000 0x0001FFFF 16kB PLB
pulsenet bram 4 0x00020000 0x00023FFF 16kB PLB
pulsenet bram 5 0x00024000 0x00027FFF 16kB PLB
pulsenet bram 6 0x00028000 0x0002CFFF 16kB PLB
pulsenet bram 7 0x0002C000 0x0002FFFF 16kB PLB
pulsenet bram 8 0x00030000 0x00033FFF 16kB PLB
pulsenet bram 9 0x00034000 0x00037FFF 16kB PLB
pulsenet bram 10 0x00038000 0x0003BFFF 16kB PLB
pulsenet bram 11 0x0003C000 0x0003FFFF 16kB PLB
pulsenet bram 12 0x00040000 0x00043FFF 16kB PLB
pulsenet bram 13 0x00044000 0x00047FFF 16kB PLB
pulsenet bram 14 0x00048000 0x0004BFFF 16kB PLB
pulsenet bram 15 0x0004C000 0x0004FFFF 16kB PLB
ddr sdram 0x50000000 0x53FFFFFF 64MB PLB
flash 0x60000000 0x60FFFFFF 16MB PLB
Ethernet MAC 0x81000000 0x8100FFFF 64kB PLB
leds 0x81420000 0x8142FFFF 64kB PLB
switches 0x81440000 0x8144FFFF 64kB PLB
dac iic 0x81600000 0x8160FFFF 64kB PLB
intc 0x81800000 0x81800000 64kB PLB
mbrd iic 0x82000000 0x8200FFFF 64kB PLB
sysmon 0x83800000 0x8380FFFF 64kB PLB
systimer 0x83C00000 0x83C0FFFF 64kB PLB
rs232 uart 0x84000000 0x8400FFFF 64kB PLB
mdm debug 0x84400000 0x8440FFFF 64kB PLB
pulsenet single 0xC7E00000 0xC7E00000 64kB PLB
pulsenet core 0xCD400000 0xCD400000 64kB PLB
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3.2.2 Embedded System Peripherals

In the PulseNet-V Microblaze design, system peripherals can be independant, or they

can be associated with one or more busses. The PusleNet-V system has three busses, two

are Local Memory Bus (LMB) for memory access and one is the Processor Local Bus.

The Microblaze processor uses the two LMBs for high-speed data and instruction local

memory. Peripherals that need to communicate with the processor attach to the PLB. Some

peripherals do not need the complexity of the PLB and are independently connected to the

processor or to other peripherals. Of the 61 peripherals, one is the actual PLB bus itself,

2 are the LMBs, 44 are connected to the Processor Local Bus and 11 are not affiliated

with any bus. All the peripherals are Xilinx XPS modules except two, pulsenet core and

pnet single, which are custom modules coded specifically for Pulsenet-V. The purpose of

the Xilinx modules are described in the subsections below. A description of the Pulsenet-V

specific module, pulsenet core, follows in its own dedicated section. The pnet single

module is simply a pulsenet core with only one flash channel. This superfluous channel

was included as an added feature for future use.
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Table 3.4: Pulsenet-V Peripherals.

Name Desc IP Bus

flash Flash memory controller xps mch emc v3.01.a PLB
ddr sdram Double data rate SDRAM controller mpmc v5.04.a XCL0:XCL1
mdm debug In-circuit debugging for Microblaze mdm v1.00.g PLB
intc Interrupt coalescing and control xps intc v2.01.a PLB
Ethernet MAC Ethernet Media Access Controller xps ethernetlite v3.01.a PLB
leds GPIO controller for 16 LEDS xps gpio v2.00.a PLB
switches GPIO controller for 4 switches xps gpio v2.00.a PLB
mbrd iic I2C controller for motherboard I2C bus xps iic v2.03.a PLB
pv bus IIC controller for DAC xps iic v2.03.a PLB
sysmon Virtex on-board temp monitor xps sysmon adc v2.00.a PLB
systimer Dual system timer xps timer v1.02.a PLB
rs232 uart Serial port xps uartlite v1.02.a PLB
clock gen Clock generator clock generator v3.02.a None
gps10M ds buf Differential buffer for GPS 10MHz clock util ds buf v1.01.a None
gps1pps ds buf Differential buffer for GPS 1PPS clock util ds buf v1.01.a None
sys clk ds buf Differential buffer for main system clock util ds buf v1.01.a None
trig in n ds buf Differential buffer for external coincidence trigger util ds buf v1.01.a None
trig out n ds buf Differential buffer for coincidence trigger output util ds buf v1.01.a None
trig in mux Multiplexer for input trigger and serial port input util io mux v1.00.a None
trig out mux Multiplexer for trigger output and serial port output util io mux v1.00.a None
sys reset System reset controller proc sys reset v2.00.a None

3.3 PulseNet Core

The pulsenet core is the PulseNet-V proprietary VHDL module that contains the design

for the flash converters, coincidence triggers, astronomy pulse counters, GPS timestamp

counters, and configuration registers. It communicates with the Microblaze processor over

the processor local bus and has numerous non-PLB and external pin connections. The core

is controlled by reading and setting its 68 configuration registers.
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3.3.1 Design Structure

The overall structure is show in figure Figure 3.3. At the top level, the pulsenet core is a

PLB peripheral with sixty-eight 32-bit registers, interrupt logic, and soft reset capability. The

code structure splits the pulsenet core into four files, pulsenet top.vhd, userlogic.vhd,

pnet control.vhd, and pnet ram.vhd. pulsenet top.vhd and userlogic.vhd are auto-

generated files that contain the PLB bus connection structures. They have been heavily

modified to create additional bus connections to block RAM and other microblaze bus pe-

ripherals. The triggering control logic is contained within the component pnet control

which contains 32 instances of pnet ram. The triggering control state machine, address

counters, GPS counters, and other features common to the 32 flash converters are included

within pnet control. Flash converters, astronomy pulse counters, coincidence triggers, and

all other logic operating on the sampler clock is contained within pnet ram.vhd.

pulsenet top

The top module of the pulsenet core heirarchy is pulsenet top where the Xilinx library

components and user logic is instantiated. A PLB slave component, plbv47 slave -

single v1 01 a, is needed to provide access to bus signals to user logic. The interrupt

component, interrupt control v2 01 a, coalesces registered, level, and edge triggered in-

terrupts into a single interrupt signal for the pulsenet core. The interrupt address space

has registers for configuring and monitoring individual interrupts. Only one registered-level

interrupt is utilized for the data ready signal. A soft reset module (proc common v3 00 -

a.soft reset) is instantiated to provide a software reset for the pulsenet core. Sixteen bus

connections are made by pulsenet top in order to connect the sampled data lines (ddr int -

q), address counter lines, and sample clock to block RAM. The sample memory block RAM

are bus peripherals that are instantiated elsewhere.

External connections to pins are made at the top level by pulsenet top in order to

pass the signals down to lower pulsenet core levels. These connections are not associated

with any bus and include the 256 LVDS pins pairs (data 0(7:0) to data 31(7:0)) for data

sampling, the 50 MHz pre-PLL-multiplied sample clock (sys clk), the trigger lines (trig in n

and trig out n), the GPS clocks (gps10M and gps1pps), the pnet ready output (pnet ready), a
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board-level resistor coded ID number (pulsenet id), and the serial/trigger multiplexer control

output (serial debug disable).

user logic

The user logic module instantiates pnet control, a clock manager to generate the

sample clock, and 68 registers that are accessed from the PLB bus. The registers are used

for both configuring how the pulsenet core operates and for providing status information

from the core. For example, register 7 sets which of the 8 VREF’s will be used as the trigger

threshold and register 0 indicates whether a trigger has occurred. Table 3.5 shows the purpose

of each register. User logic also synthesizes a digital clock manager (DCM) module, two

PLL’s, and a global clock buffer multiplexer to provide two speed options for the sample

clock, 400 MHz and 300 MHZ. Lastly, user logic feeds through many external signals,

such as the LVDS pin inputs, to pnet control and pnet ram.

pnet control

The trigger state machine and 32 pnet ram instantiations constitute the bulk of pnet -

control. The state machine reacts to triggers from any of the 32 flash ADC’s (or 16 pairs

if linked for coincidence) by continuing to sample data for a configurable number of clocks

to obtain post-trigger data before stopping the samplers and copying GPS timestamp and

trigger registers into the user logic configuration register space. A GPS counter is created

by this module; by default it increments for every edge of the 10 MHz clock and resets at the 1

pulse-per-second positive clock edge. The edge polarity is selectable through the user logic

configuration registers. The trigger interrupt signal is generated by logic in pnet control.

External triggers are handled in pnet control, as well as the circuitry for coincidence linking

of the flash ADC channels of pnet ram. Special care is taken for the coincidence linking,

reset, and block ram address counter code. Signals in these sub-circuits span the entire

Virtex-5 FPGA. Timing closure could not be achieved for large fanout signals like reset and

the block ram address counters so register duplication was enabled to reduce the fanout in

stages. This register duplication also pipelines the signals. Pipelining is especially important

for signals that must travel from one side of the chip to the other. This is not possible in
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one sample clock cycle so the signal pipelining is required.

pnet ram

Pnet ram’s main job is to build a flash ADC out of 16 I/O pins. Trigger logic for each

flash ADC channel, two astronomy pulse counters, and astronomy counter multiplexers are

also part of the pnet ram module. Because all the logic in pnet ram runs at the sample clock

speed, the design has very few levels of logic and some signals have multiple pipeline stages.
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3.3.2 Digitization

For every differential input pair, there is a differential amplifier (IBUFDS) that acts

as a comparator for the two inputs. Dual-edge flip-flops (IDDR) follow in the signal path

directly after the differential amplifiers (Figure 3.5). The dual-edge flip flops are clocked

by a 300 MHz or 400 MHz PLL-multiplied clock derived from the 50 MHz master clock

sys clk. The IDDR outputs are pipelined so that both the positive-edge and negative-edge

samples appear at the output on the positive-edge clock cycle. This aligns both samples

to the positive clock edge so they can be processed and stored using logic that is clocked

by the same positive clock edge. The IDDR outputs are sent through two D-flops before

being written to a block RAM (the sample memory). The two D-flops are used as buffers.

IDDR outputs may be routed to a block RAM that is too far away to meet signal timing

margins in one clock period. Extra D-flops in between the IDDR and block RAM allow for

additional delay. Block RAM is not instantiated in pnet ram, rather it exists as a peripheral

(pulsenet ram [0:15]) on the Processor Local Bus; pnet ram provides the data and address

lines that are connected to the block RAM peripheral.

The above digitization configuration allows sample rates up to 800 Msps. Use of an

ISERDES input stage rather than the IDDR dual-edge flip-flop can achieve sampling at

1.5 Gsps. The ISERDES accepts an input clock up to ∼750 MHz and can sample the LVDS

differential amplifiers on both clock edges. The output rate divisor is set to 4 and so that 4

samples are written to the block RAM at a rate of 375 MHz. This high-speed configuration

is not used by the Advanced All-sky Camera during normal observations, but it has been

tested and validated (pulse tests are shown in Chapter 5).

84



Analog
Inputs

0

1

2

3

4

5

6

7

Threshold
Level

clock
dual-edge
registers

LVDS
Differential
Amplifiers

Block
RAM

Ring
Buffer

D
A
T
A

A
D
D
R
E
S
S

13

Address
Counter

OUT

Trigger
Logic

IN

EN

16

VREF(7)

VREF(6)

VREF(5)

VREF(4)

VREF(3)

VREF(2)

VREF(1)

VREF(0)

ddr_int_q1(7)
ddr_int_q2(7)

ddr_int_q1(0)
ddr_int_q2(0)

ram
_

counter(12:0)

ain

ddr_int_q1(6)
ddr_int_q2(6)

ddr_int_q1(5)
ddr_int_q2(5)

ddr_int_q1(4)
ddr_int_q2(4)

ddr_int_q1(3)
ddr_int_q2(3)

ddr_int_q1(2)
ddr_int_q2(2)

ddr_int_q1(1)
ddr_int_q2(1)

Figure 3.5

85



3.3.3 Trigger Logic

Recognizing and capturing coincidence pulses is a critical feature of the pulsenet core.

It must react to coincident pulses on 16 ADC channel pairs at the full sample clock rate

and coordinate the gathering of sample data by the processor when a coincident pulse is

received. When the “trigger logic” detects a coincident pulse, it activates the “trigger”

signal. Within the PulseNet-V’s pulsenet core, the trigger starts a chain of events called the

“trigger sequence”:

1. The current state of the GPS timestamp counter is stored in gps addr;

2. Individual channel trigger outputs are stored in triggers lock;

3. Post-trigger samples are recorded for a number of clocks according to dataout count ;

4. The Microblaze processor is notified through an interrupt that a trigger occurred and

the ADC sampler data is ready to be handled;

5. Samples from all 32 ADC channels are transferred from block RAM into DDR SDRAM

by the processor as directed in the interrupt service routine (ISR);

6. The processor retrieves the stored GPS timestamp from the time of the trigger;

7. The pulsenet core is notified by the processor when all of the data transfers are

completed before exiting the ISR;

8. The pulsenet core samplers and trigger/control logic are reset;

9. The trigger logic becomes active again, waiting for a new set of coincident pulses on

any analog input pair;

The threshold, trig width select, dataout count, trigger invert, and link configuration options

can affect how the trigger sequence proceeds. The threshold option sets which VREF

comparator from each pulsenet core channel is routed to the trigger logic. Comparators from

channel pairs are AND’ed together (constituting the “coincidence” requirement), and then

the sixteen pairs are OR’ed to create the master trigger signal. The channel pair AND circuit
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can be extended to include delayed versions of the VREF comparator outputs. This creates

a “coincidence window” where the trigger will fire if the VREF comparator of input pairs are

active (VREF comparators operate active-low in the actual design) within trig width select+1

sample periods. Valid options for trig width select are 0 to 4 indicating a coincidence window

of 1 to 5 sample clocks. PulseNet-V is normally operated with a 400 MHz sample clock

(two samples per clock) using the smallest coincidence window, but the window is selectable

between 2.5 ns, 5 ns, 7.5 ns, 10 ns, and 12.5 ns. The number of post-trigger samples is

configured through the dataout count option. The trigger logic state machine waits

2× dataout count× sampleClockFreq

125MHz
(3.1)

before stopping the sample memory address counter. Normal operation uses a value of

900 for dataout count (2432 samples or 3.04 µs of pre-trigger). The lowest VREF level is

normally set above (in voltage) the bias level so the ddr int q(0) outputs of the VREF(0)

LVDS amplifiers are almost always active. If threshold was set to VREF(0), the pulsenet

core would be continuously triggered. The option trigger invert is needed to flip the sense

of the trigger activation to prevent this behavior. It is a rarely used option, and then

only for debugging purposes. Another useful debugging feature is the link option. With

link enabled, coincidences between channel pairs are required for the trigger logic to fire.

However, disabling link removes the coincidence requirement from the trigger logic; a signal

level ≥VREF in any pulsenet core ADC channel will cause the system to trigger.

In addition to coincidences from the analog input pairs, triggers can be caused by an

external trigger input trig in. The trig in line is controlled by a Spartan-6 FPGA on the

Advanced All-sky Camera’s motherboard. The Spartan-6 receives a trigger output (trig -

out) from each of the camera’s 32 PulseNet-V’s. The trig out of a PulseNet-V is active-low

when any channel pair of the pulsenet core is triggered. The Spartan-6 essentially acts as

a 32-input OR gate; it distributes the trig out from any PulseNet-V to the remaining 31

PulseNet-V’s in the camera via their trig in input.

3.3.4 Astronomy Counters

Two 25-bit astronomy counters are available for each flash ADC channel. The circuit for

one counter of channel 0 shown in Figure 3.6. The astronomy counter inputs are connected
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Figure 3.6: Astronomy Counter Circuit Diagram

to the IDDR sampled data outputs through a multiplexer. The configuration register astro -

select1 chooses which LVDS comparator output (VREF) is counted. There are two samples

per clock from the dual-edge register ( q1 and q2) that are added to increment the counter

either directly or after edge-detection has been performed. The configuration register astro -

edge select chooses whether positive levels, positive edges, or negative edges increment the

counter astro counter1. The astro timer resets periodically, according to astro timer select,

and causes astro counter1 to be loaded into the astro register. The width of the astro timer

counter is also selectable; the overflow period can be 0.75, 2.1, 4.7, or 10 seconds. The counter

that appears in the user logic configuration register astro reg is selected by astro reg select.

Channel 0 is mapped to the pulsenet core configuration register 32. The astronomy counters

for channel 1 are mapped to register 33, and so on, up to register 63 for channel 31.
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3.3.5 Configuration Registers

Table 3.5: PulseNet-V Core Configuration Registers

Register Num Bits Name Dir Description

Status 1
0 24 data ready R Indicates sampler data from trigger event can be read
0 23 trig in lock R Indicates external trigger from motherboard
0 5:0 PulseNet ID R PulseNet ID set by resistors on daughterboard

Status 2 2 11:0 trig addr R Sampler address counter value when triggered.
Status 3 3 31:0 trig lock R Indicates which channels were triggered. Ch 31–0
GPS Status 1 4 23:0 GPS trig’d count R Triggered GPS counter

Trig Debug

5 31 trig in R External trigger from motherboard
5 30 trig in pending R trig in|trig in enabled
5 29 trig int only R OR of all channels’ Trigger excluding external trigger
5 28 trig out i R Internal trigger out signal
5 27 trig simple lock R Internal signal to trigger system
5 26 Trig In Disable RW Disables external triggers from motherboard

Reset
6 31 pll en RW PLL is enabled when pll en=1
6 0 pnet dis RW Hold sampers in reset when pnet dis=1

Threshold
7 31 trig inv RW Triggers on Vinput < VREF if trig inv=1
7 2:0 threshold RW Threshold VREF setting [0–7]

Dataout Cnt 8 12:0 dataout cnt stop RW Sets post-trigger samples=dataout cnt stop×125/400
Link 9 0 link RW Requires coincidence for trigger when link=1

GPS Cfg
10 1 gps10MhzInvert RW Set for active low 10 MHz GPS clock
10 0 gps1PPSInvert RW Set for active low 1 PPS GPS clock

GPS Counter 11 23:0 gps count R Direct read access to the GPS counter
Triggers 12 31:0 triggers R Direct read access to channel trigger output
Ready Ack 13 0 data ready ack W Write to allow the pulsenet core to reset
Serial Cfg 14 0 serial debug disable RW Clear to direct serial debug terminal of Microblaze onto trigger

lines

Watchdog Cfg

15 31 watchdog timer reset W Set to kick watchdog
15 30 watchdog alarm RW Set if watchdog times out
15 29 dcm rst R Reset status bit of sampler clock module
15 28 init ready R pulsenet core control state machine initialized status bit
15 27:0 watchdog timer R Direct read access to the watchdog timer

Pnet Status 16 0 pnet ready i R External signal to motherboard that the pulsenet core and
pulsenetvd are active – !watchdog alarm & !dcm rst & init ready

DCM Cfg

17 31:28 DCMDO R Output bits of pulsenet core clock module skew adjust
17 3 PSDONE W Done signal for pulsenet core clock module skew adjust

17 2 PSINCDEC W Inc/Dec signal for pulsenet core clock module skew adjust
17 1 PSEN W Enable signal for pulsenet core clock module skew adjust
17 0 PSCLK W Clock signal for pulsenet core clock module skew adjust

Astro Cfg 1
18 31 astro reg select RW Select which astro select1 is routed to registers 32–63
18 17:16 astro select1 RW Select which VREF is routed to astro counter1
18 1:0 astro select2 RW Select which VREF is routed to astro counter2

Clock Sel 19 0 clock select RW Clear for 400MHz, set for 300MHz
Trig Width 20 2:0 trig width select RW Coincidence window is 2×trig width select+1 clocks

State Mach

21 31:28 state readout R State machine encoding
21 22 data ready R Is set if trig’d data is available in block RAM
21 21 self reset R Is set after data ready ack goes high

Continued on next page
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Table 3.5 (Continued)

Register Reg# Bit Name Dir Description

21 17 dataout counter reset R Status of dataout counter reset line
21 16 dataout counter enable R Status of dataout counter enable line
21 13:0 dataout counter R Direct read access to dataout counter

RSVD 22 31:0 None RW Reserved for future use
RSVD 23 31:0 None RW Reserved for future use
RSVD 24 31:0 None RW Reserved for future use
RSVD 25 31:0 None RW Reserved for future use
RSVD 26 31:0 None RW Reserved for future use
RSVD 27 31:0 None RW Reserved for future use

Astro Cfg 2

28 5:4 astro edge select RW Astronomy pulse count type selector; high(00b), positive
edge(01b), negative edge(11b)

28 1:0 astro timer select RW Astronomy pulse counter period selector; 0.75 sec(00b),
2.1 sec(01b), 4.8 sec(10b), or 10.1 sec(11b)

Astro Cfg 3 29 24:0 astro addr RW Select the channel that is routed to astro reg1
Astro Stat 1 30 24:0 astro ref1 R Read access to the astronomy pulse counter astro counter1

selected by astro addr
Astro Stat 2 31 24:0 astro ref1 R Read access to the astronomy pulse counter astro counter2

selected by astro addr
Astro Cntr 32-63 24:0 astro reg[0-31] R Astronomy counter for channel 0 to 31

RSVD 64 31:0 None RW Reserved for future use
RSVD 65 31:0 None RW Reserved for future use
RSVD 66 31:0 None RW Reserved for future use
RSVD 67 31:0 None RW Reserved for future use
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Figure 3.7: Virtex-5 FF1153 package pinout for PulseNet-V ADC channels (a.k.a Virtex-5

Sudoku). Each channel consists of 8 differential pair (16 pins) labeled 0–7. The number

represents the pin’s VREF. A triangle to the top left indicates the signal or p-pin of the

pair. Pin assignments for flash memory, DDR SDRAM, 10/100 MAC PHY, and serial are

also shown. White boxes are the power and ground pins and other lightly colored boxes are

mainly unused GPIO.
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3.4 Software

The PulseNet-V design exploits numerous levels of software. At the lowest firmware

level, the PulseNet-V VHDL code is itself software. The VHDL and FPGA design has been

described in the section above. This section deals with the operating system, drivers for the

FPGA hardware, interrupt service routines, compiled software libraries, bootloader code,

configuration scripts, and daemon programs.

3.4.1 Operating System

The PulseNet-V uses a custom compiled Linux kernel as the operating system for the

Microblaze processor. Linux is a widely used open-source operating system that has a

massive base of programs, drivers, and tools written for it. PulseNet-V makes use of the

open-source tools to compile its daemon programs and even the kernel itself. The linux kernel

source, GNU libraries, and compilers were obtained from Xilinx (http://wiki.xilinx.com/

microblaze-linux). Since Microblaze is a soft-core processor, it can be configured to have

a hardware integer divider, a 32-bit or 64-bit integer multiplier, a floating point unit, a

barrel shifter, a pattern comparator, a machine status register, instruction and data cache,

exception handling, and many other options. These options must be passed to the kernel so

that the correctly optimized functions and assembly instructions are used by the compiler.

Table 3.6 lists a selection of the config option used to compile the kernel.

The compiler needs to know about other devices in the system besides the processor.

This information is conveyed by a device tree file (.dts). A device tree for the PulseNet-V

design was generated using Xilinx’s device tree generator (http://xilinx.wikidot.com/

device-tree-generator). The device tree and kernel config were used to produce a kernel

with the matching configuration options to be compatible with the soft-core Microblaze

processor and the rest of the PulseNet-V hardware. The big-endian linux kernel was used in

order to support the processor local bus (a little-endian kernel is also available for the AXI

bus).
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Table 3.6: Microblaze Kernel Config Options

Option

CONFIG MICROBLAZE=y
CONFIG KERNEL BASE ADDR=0x50000000
CONFIG XILINX MICROBLAZE0 FAMILY=”virtex5”
CONFIG XILINX MICROBLAZE0 USE MSR INSTR=1
CONFIG XILINX MICROBLAZE0 USE PCMP INSTR=1
CONFIG XILINX MICROBLAZE0 USE BARREL=1
CONFIG XILINX MICROBLAZE0 USE DIV=1
CONFIG XILINX MICROBLAZE0 USE HW MUL=1
CONFIG XILINX MICROBLAZE0 USE FPU=1
CONFIG XILINX MICROBLAZE0 HW VER=”7.30.b”
CONFIG XILINX DRIVERS=y
CONFIG NEED XILINX LLDMA=y
CONFIG XILINX EMACLITE=y
CONFIG SERIAL UARTLITE=y
CONFIG SERIAL UARTLITE CONSOLE=y

3.4.2 Drivers

Drivers for most of the Xilinx embedded system modules, such as the UARTLite serial

port and EMACLite ethernet MAC exist in the mainline Linux source code. The EMACLite

driver was slightly modified to accept a MAC address parameter from the U-boot bootloader.

Each PulseNet-V needs a unique MAC address for networking purposes. This unique

address is stored in the XCF128XL Platform Flash along with the FPGA configuration

and bootloader code. The address is passed to the Linux kernel as a boot string and then is

passed to the EMACLite driver.

A device driver (\dev\pnet) for the pulsenet core was written to handle the interrupt

requests that occur when a coincidence pulse triggers the system. The full interrupt handler

code is derived in part from the short.c example by Alessandro Rubini and also from the

PC104 interrupt driver written for the original all-sky camera by Chip Coldwell. A valid

interrupt forces the kernel to execute the function shown in Listing 3.1.
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Listing 3.1: The pnet interrupt function is executed when an interrupt is emitted from

the pulsenet core.

irqreturn_t pnet_interrupt( int irq , void *dev_id ) {

struct timeval tv;

int written;

int reg;

// takes 48us to get here

/* Copy all coinc samples from BRAM to kernel space.

* Then copy all pnet registers to kernel also. */

memcpy_fromio( (unsigned long*) coinc_buffer_area , (unsigned long*)

bram_base ,bram_size);

memcpy_fromio( (unsigned long*)(coinc_buffer_area +( bram_size /4)),

(unsigned long*)pnet_base ,PNET_SIZE /4);

// acknowledge the copying of block ram

iowrite32( 0xa0 , pnet_base +13*4 );

iowrite32( 0xa1 , pnet_base +13*4 );

iowrite32( 0xa0 , pnet_base +13*4 );

// takes 2.325ms to get here

/* Record the time.

* Write a 16 byte record.

* Assume PAGE_SIZE is a multiple of 16 */

do_gettimeofday (&tv);

written = sprintf ((char *)pnet_head ,"%08u.%06u\n",

(int)(tv.tv_sec % 100000000) , (int)(tv.tv_usec));

BUG_ON(written != 16);

pnet_incr_bp (&pnet_head , written);

/* awake any reading process */

wake_up_interruptible (& pnet_queue);

reg = ioread32(pnet_base);

printk(KERN_INFO "Trig! 0x%x\n", reg)

return IRQ_HANDLED;

}
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The pnet interrupt function is executed about 48 µs after the interrupt is received.

The full 256kB of sample data from all 32 PulseNet-V flash ADC channels is first copied

into a kernel buffer (coinc buffer area). The 68 pulsenet core configuration registers are

then appended to the end of the sample data kernel buffer. An acknowledgement of the

interrupt is written to the pulsenet core in register 13. This causes the pulsenet core to be

reset and reprogrammed so that it is immediately available to collect additional coincidence

pulses. The pulsenet core is acknowledged about 2.33 ms after the first interrupt is received.

Next, the pnet interrupt function writes the system time into the pnet head buffer. This

buffer is read by accessing the device at \dev\pnet in the Linux filesystem. Finally, the

text “Trig!” is printed to the console and the interrupt exits, giving execution back to the

kernel. The daemon program, pulsenetvd (§ 3.4.6), becomes active when data is put into

the \dev\pnet device and will read and transmit the sample data in the kernel buffer to a

host computer over a transmission control protocol (TCP) connection. The pnet interrupt

module is not compiled into the kernel. It is inserted into the kernel at boot time by the

boot script to allow changes to the driver without recompiling the kernel.

3.4.3 Boot Script

After Linux finishes its own boot process, it runs the rcS script before giving up

execution to the console shell terminal. The script starts by mounting the proc, sys,

and tmp filesystems. A writeable directory is mounted using NFS over TCP at the

filesystem node \var and a default network gateway route is added to the host. System

log, kernel log, and the network time protocol NTP daemons are started and the system

date gets set. A telnet daemon is started to allow remote command-line access. The

\dev\pnet driver module is inserted before starting the pulsenetvd daemon. Finally,

the astro udp daemon (\dev\pnet) is started and a log of the boot script is written to

\var\bootscriptlog.

Important default pulsenet core configuration settings are initialized by the rcS script.

The GPS clock lines are inverted for some PulseNet-V’s. The script reads the pulsenet ID in

register 0 of the pulsenet core and calculates the inversion, if any, of the 10 MHz and 1 PPS

clocks. The coincidence window is set to the smallest value (0b) to specify a 2.5 ns window.
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The astronomy pulse counters are set to count negative pulse edges. Last, the phase of the

main system clock is delayed an amount dependent on the length of the daughterboard clock

trace to the PulseNet-V.

3.4.4 Debug

With a high-level operating system like Linux, boot messages can be critical to debugging

software and start-up issues. The PulseNet-V contains a special feature to allow serial port

access to Linux during boot and even to the bootloader before Linux has booted. At reset

and at power-on, the pulsenet core routes its default serial console through the trigger in

and trigger out lines. In the Advanced All-sky Camera, the trigger lines for all PulseNet-V’s

are routed to a Spartan-6 FPGA. The Spartan-6, then, has access to the serial console of

each PulseNet-V, as they boot, through the trigger lines. When PulseNet-V completes its

boot script, a configuration bit is set in the pulsenet core to return the trigger lines to their

normal behavior. The serial console is then routed to a header on the daughterboard. The

serial console can be remotely accessed by the Spartan-6 at any time, however, by resetting

the serial debug enable bit of the desired PulseNet-V. The serial console communicates at

9600 baud using 8 data bits, no parity, and one stop bit

3.4.5 Bootloaders

PulseNet-V implements a two-stage bootloader for booting the Linux kernel. Stage-1

initializes the flash memory which contains the stage-2 bootloader and transfers the second

stage bootloader code from the flash memory into RAM. Execution then transfers to the

beginning of the stage-2 bootloader code in RAM. U-boot, the stage-2 bootloader, grabs the

compressed Linux kernel from a server over ethernet, uncompresses the kernel, and executes

from the base of the uncompressed kernel.

The two-stage bootloader process is necessary because the size of the initial code that can

be executed by the FPGA at power-up is very small. At power-on, the FPGA automatically

loads its configuration from a flash memory. The first instructions executed by Microblaze

are whatever exists in the instruction RAM after configuration. Therefore, the minimal

stage-1 bootloader is placed in this small instruction RAM space. The instruction RAM for
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PulseNet-V is 32kB, so the stage-1 bootloader, which is written into the FPGA configuration,

must fit within that space.

The stage-2 bootloader is a version of U-boot, an open source bootloader meant to be

small, fast, and configurable. U-boot is closely related to Linux and has special features for

booting Linux images. Additionally it offers a command-line interface prior to booting the

target application, the ability to read and write to flash, and a user datagram protocol (UDP)

stack for loading files using the trivial file transfer protocol (TFTP). The setup for U-boot

is not trivial and numerous settings have to be applied to ensure proper compilation for a

custom configuration. U-boot has its own environment settings which must be stored in a

block of flash memory that can be separately erased and written.

The U-boot executables and default environments are initially written to the Virtex-5 over

JTAG using Xilinx’s Impact programming software and Platform Cable USB programming

pod. The default U-boot environments must be customized, in the case of the Virtex-

5 FPGAs, with a static IP address, MAC address, location of root filesystem (normally

located in a common folder on Costas and mounted over NFS), and other linux kernel boot

arguments.

At boot time, U-boot follows a script of commands. U-boot starts by downloading the

file linux.uimg from Costas using TFTP. This is a U-boot specific file which contains a

small header that describes the size, CRC, and compression scheme of the payload, an

executable image file. The .uimg file is initially placed at a high address in RAM. The

payload is decompressed if necessary and then copied to the start of RAM at address 0x0.

The location of the bootargs string is loaded into the Microblaze register R5 and execution

is passed to the Linux kernel.

3.4.6 Daemon Programs

PulseNet-V must provide a mechanism for the outside world to command and control

its operation. A linux daemon program named pulsenetvd provides this mechanism by

exposing the PulseNet-V’s services over ethernet. The daemon accepts and processes

pulsenet core programming commands and data requests. An additional daemon, astro udp,

continuously reads the astronomy pulse counters and sends the count values to a specified
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IP address.

pulsenetvd

This program is executed at the end of the Linux boot script and must be running

to be able to control PulseNet-V. It first opens a socket and listens for connections by

default on port 8001. Once connected, commands from a host are received, executed, and

a response is returned. The main function of pulsenetvd contains a select function that

allows the program to sleep until the socket receives a command. Commands have three

parts, a tag, a length, and the value. Tags are one-byte positive numbers for commands

coming to the PulseNet-V and negative for replies from PulseNet-V. The length is a two-

byte word specifying the number of bytes in the value part of the command. The value

contains data according to the tag of the command. Commands are ASCII encoded with

newline terminators and spaces separating the tag, length, and value. A typical command

set from oseti.py would be to reset the pulsenet core, set programming options, and enable

the ADC samplers. Figure 3.8 lists the available commands and their formatting.

A Linux supervisor keeps watch over pulsenetvd and will restart the program if it ever

crashes. In addition, PulseNet-V provides a watchdog timer that is periodically reset by

pulsenetvd. If pulsenetvd is not active, the watchdog timer will overflow and set the

watchdog alarm signal. A hardware pin output, pnet ready will be deactivated if watchdog -

alarm is set. This hardware signal is read by the Spartan-6 FPGA on the motherboard so

that it can reset the system or a specific PulseNet-V if pulsenetvd is inactive.
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PulseNet-V Communication Protocol

T

L

V

Tag - 1 byte

Length - 2 bytes

Value - L bytes

Tags are positive number when sent from
  host to PulseNet-V.  PulseNet-V replies
  with negative numbered tags.
All multiple byte values are sent MSB first.

reset

autoreprogram
echo autoreprogram

telemetry
telemetry reply

coincidence data

program DAC
echo program DAC
fastclk enable
echo fastck enable
fastclk disable
echo fastck disable
set register
echo set register

read register
read register reply

core enable
echo core enable
core disable
echo core disable

read astro counters
read astro counter reply

 1

 3
-3

 4
-4

-5

 12
-12
 13
-13
 14
-14
 15
-15

 16
-16

 17
-17
 18
-18

 25
-25

1

2
2

 0
25

variable

18
18
1
1
1
1
5
5

1
4

1
1
1
1

0
128

PN# 0...31
echo reset -1 1

program  2 6
echo program -2 6

PN# Threshold Veto Pattern Counts:2

ContentsName : NumBytes

Command  T L V                                                  

PN# ReprogNum

PN# VccInt:2 VccAux:2 Vrefp:2 Temp:2
Vref[0]:2 Vref[1]:2 Vref[2]:2 Vref[3]:2
Vref[4]:2 Vref[5]:2 Vref[6]:2 Vref[7]:2

Sample Data 8192 bytes x 32 channels
zlib compressed, base64 encoded
0x4F TrigInFlag TrigReg:4 LockAddr:2
GPS:3 TrigReg:4 LockAddr:2 Threshold
Veto Pattern Counts:2

PN# ValCh[0]:20x00 ValCh[15]:2

PN#

PN#

RegNum Value:4

RegNum
Value:4

PN#

PN#

CountsCh[0]:4 CountsCh[31]:4

Figure 3.8: Messages are sent to PulseNet-V over ethernet and are handled by pulsenetvd.

The communication protocol is shown in the table above. Messages are encoded in ASCII

before transmission.
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astro udp

Astro udp is the PulseNet-V’s linux user-space program for disseminating astronomy

counts. Its task is to read the count values from the 32 astro counter1 registers and forward

the data to a host. Astro udp will emit a UDP packet containing all of the counts at the

count update rate, which is configurable between 0.75, 2, 4, or 10 seconds. The count rates

are perishable information so using the UDP protocol allows packets to be dropped during

periods of high network traffic. Since the only intervening network between the server and

the camera are dedicated switches, packet loss is rare.

3.5 FPGA Configuration and Flash

The programming of the Virtex-5 FPGA with the PulseNet-V design can be effected in

multiple ways. During development and testing, the FPGA is normally configured using a

Xilinx USB programming cable plugged into a header on the PulseNet-V’s circuit board. For

boot time configuration, the Advanced All-sky Camera’s daughterboards provide a Xilinx

Platform Flash XL XCF128X 128 Mbit parallel NOR flash memory chip for each PulseNet-

V. The Platform Flash XL has 16 data lines for fast loading of the configuration data;

PulseNet-V bit files specify a 2 MHz config clock (CCLK) so that the configuration loads

in about one second. The FPGA configuration as well as the stage-2 bootloader are held in

the Platform Flash. The Virtex-5 configuration bitfile consumes the bottom 29,124,608 bits

of the Platform Flash XL and the U-boot bootloader resides in the top 512kB starting at

address 0xF80000.

Initial programming of the Platform Flash uses the “indirect method“ provided by the

Xilinx EDK. The flash programming MCS file is generated to contain the bitswapped versions

of the PulseNet-V FPGA configuration and the U-boot bootloader. Then the indirect

programming core is loaded over JTAG onto the Virtex-5. The programming core contains

a flash memory controller able to write to the Platform Flash XL. The flash programming

data is sent to the indirect programming core serially within JTAG commands. This process

is slow, taking about 15 minutes to completely erase and program the 128 Mbit flash chip.

Faster programming of the XL can be performed from within a Linux environment running
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on the PulseNet-V using the Memory Technology Device (MTD) software libraries. The

PulseNet-V’s Microblaze processor controls the address, data, and control lines of the XL

using an external memory controller core (xps mch emc v.3.01a). At power-on, the stage-

1 bootloader sets a configuration register of the XL to enable asynchronous read mode

operation before reading from the XL. From that point, the XL address space is mapped to

the start of the xps mch emc memory controllers address space. The Microblaze processor

can directly access the XL flash memory simply by performing a read on the PLB using

the xps mch emc address offset as the start of the flash memory address space. The MTD

software libraries are then able to read, write and erase the XL flash memory. Rewriting

the PulseNet-V FPGA configuration using the MTD libraries takes about two minutes. A

third option for rewriting the Platform Flash is from the U-boot command-line. The U-boot

environment is able to be accessed for the first few seconds after power up. If a key press

is sent to the PulseNet-V’s serial console, the U-boot command-line will prevent booting

into Linux and allow further commands to be entered. U-boot is essentially a stripped

down Linux environment but it also has the ability to read and write flash memories. Flash

programming MCS files can be downloaded from a TFTP server, stored in DDR SDRAM,

and then programmed to the Platform Flash XL.

3.6 Design Tools

The PulseNet-V encompasses multiple layers of software which must be designed,

compiled, and debugged. In FPGAs, even the hardware level is coded using software. For

the FPGA design, Xilinx provided the toolchain called ISE Design Suite. As PulseNet-V

features a Microblaze processor, much of the design work centered around configuration

of the processer and peripherals using Xilinx Platform Studio (XPS) in ISE’s Embdedded

Development Kit (EDK). XPS synthesizes VHDL and Verilog peripheral libraries provided by

Xilinx and by the user into netlists, merges the netlists and constraints into a design file, maps

the design to resources on the target FPGA, places and routes the design, analyzes the design

timing, and generates a programming file. Initial development of the pulsenet core module

was done with ISE Project Navigator for synthesis, RTL browsing, and simulation using the

ISim Simulator. Xilinx PlanAhead and fpga editor software was useful for final system design
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file inspection and timing constraint verification. The Xilinx Software Development Studio

was used for code development of Microblaze executables such as the first stage bootloader

and various test programs. Software development of the PulseNet-V Linux kernel, Linux

executables, and U-Boot (second stage bootloader) utilized the Microblaze-linux GCC cross-

compiler running under a virtualized Ubuntu 11.02 distribution for compilation.
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Chapter 4

Advanced All-Sky Camera

The Advanced All-sky Camera (AdvCam), together with the existing all-sky optical SETI

infrastructure, the observatory, telescope, and control software, complete the Advanded All-

sky Optical SETI System. The AdvCam was designed to address the limitations of the

first generation All-sky Camera (AsCam). The AsCam and its limitations were described

in Chapter 2. These limitations include single pixel triggering, short sample memory record

length, low-refresh rate astronomy functions, limited threshold level adjustment, and lack of

extended-red photomultiplier tube spectral sensitivity. Advances in modern FPGA’s allowed

these limitations to be overcome while offering higher data link bandwidth, flexible on-board

processing, and the ability for hardware functions to be upgraded through FPGA design

revisions and firmware changes. The following are the most important new features of the

Advanced All-sky Camera:

Triggering The triggering system of the AdvCam can be linked so that a coincident pulse

in one pixel pair will cause waveform readout of every pixel in the camera. The purpose

of this trigger mode is to discriminate between cosmic ray induced Čerenkov flashes

which are an isotropic source of background events. The digitized waveforms of the

pixels surrounding the triggered pixel provide imaging information that can recognize

Čerenkov flashes so that they are not mistaken for distant laser pulse transmission.

The trigger system works by collecting trigger output signals from the PulseNet-V’s at

a central Spartan-6 FPGA on the motherboard. The Spartan-6 immediately relays the

trigger output of any PulseNet-V to the external trigger inputs of all other PulseNet-V’s
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in the system.

Astronomy Mode The AdvCam has the potential to run in an “astronomy mode” by

counting the single photo-electron pulses from each photomultiplier tube anode in the

detector array and displaying this information in an image format. The AsCam could

operate in this astronomy mode, however counts could only be acquired from 32 out of

the 512 available pixels at any one time. While a crude image of the sky could be made,

the readout time severely limited the usefulness of this mode for telescope pointing

calibration. The AdvCam enables a much more robust astronomy mode. Pulse counts

can be retrieved from the camera for every pixel once a second, frequent enough to

easily recognize stars transiting the PMTs and use the star transits to calibrate the

pointing position of the telescope.

Sample Memory A major advantage of the Advanced All-sky Camera over its predecessor

is its larger sample memory. A total of 8k samples at 800 megasamples-per-second

give the camera 10.25 µs of record time per trigger versus the 512 samples at

600 megasamples-per-second of the AsCam. Laser pulses with repeat times longer

than 850 nanoseconds but shorter than a few seconds would not be acquired by the

previous camera. The Advanced All-sky System increases the record time by twelve-

fold.

Threshold Levels The AsCam was hampered by clock noise coupling on its

daughterboards into certain flash ADC channels. This caused excessive coincidence

triggering on those channels at much higher threshold voltages than other channels

with little clock noise coupling. Care has been taken to route high-speed digital lines

away from the analog inputs and reference voltages on the AdvCam daughterboards.

Additionally, each daughterboard has its own reference voltage DAC and noise filters

on the reference voltage lines. This has allowed the threshold voltage of the AdvCam

to be lowered, increasing the system’s sensitivity.

PMT Spectral Sensitivity New photomultiplier tubes are used in the Advanced All-sky

Camera to extend the spectral range of the all-sky survey and increase the red and

near-infrared sensitivity. This is expected to increase the range and number of stars
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observed by the AdvCam, especially in the galactic plane where there is more extinction

of shorter wavelengths.

4.1 Advanced All-sky Optical SETI Camera

The main purpose of the Advanced All-sky Camera is to monitor photomultiplier tubes

for flashes of light over a certain intensity threshold, record the waveforms of light flash

events, and send that information to a database server which serves as a repository for all

events. Auxilary functions include recording the timing of events, measuring environmental

temperature and humidity, measuring telescope inclination angle, setting photomultiplier

tube supply voltage, and sensing ambient light levels.

The camera consists of a front compartment containing a shutter, entrance window,

beamsplitter, and photomultiplier array. A rear compartment contains the electronics

necessary to digitize and record the signals coming from the photomultiplier array. Save

for the new PMTs used in the AdvCam, the camera’s front end optics have already been

described in § 2.4.1. The electronics are split onto nine boards: a single motherboard

that links the operations of eight daugherboards. The motherboard carries power rails, a

50 MHz master clock signal, Global Positioning System (GPS) clocks (10 MHz and 1 pulse-

per-second), trigger signals, an I2C bus, and JTAG programming lines to the daughterboards.

Each daughterboard connects to a matched pairs of photomultipliers; the PulseNet-V’s

perform flash conversion and coincidence triggering on photomultiplier tube anodes pairs.

4.1.1 Photomultiplier Tubes

The AdvCam’s photomultipliers are Hamamatsu H7546B-20’s which use extended red

multi-alkalai photocathodes. Their spectral sensitivity extends from 250–900 nm with a

peak quantum efficiency of 20% (Figure 4.1). They have a gain of about 105 at −900 V and

a single photo-electron pulse width of ∼3 ns. The tubes are divided into an 8×8 array of

anodes with an active cathode area of 2 mm × 2 mm per anode. Cross-talk between anodes

is low (∼1%) but uniformity between anodes is poor, typically 1:3. The central four pixels

generally have the best time response, gain, and sensitivity. These photomultiplier tubes
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Figure 4.1: The Advanced All-sky Camera uses uses the Hamamatsu H7564B-20 extended

red multi-alkalai photomultipier tube, extending the spectral range of the original all-sky

camera (H7546B-01) and enhancing red sensitivity [33].

were chosen so as to be pin compatible with the circuit boards and power supplies of the

previous all-sky camera. This important feature was necessary because the AdvCam circuit

boards were retrofitted into the frame of the existing all-sky camera, reusing the PMT rack,

mounting hardware, and PMT circuit boards.

4.1.2 Daughterboards

Each daughterboard hosts four PulseNet-V’s – the FPGA design for all-sky optical SETI

that handles the digitization and coincidence triggering of photomultiplier tube pixel pairs

(see Chapter 3 for details of PulseNet-V). The PulseNet-V sections are identical except for the

routing of global signals from the motherboard such as the system clock, GPS clocks, JTAG

lines, and trigger signals. Each section includes the PulseNet-V’s Virtex-5 FPGA, a Micron

64MB DDR RAM chip, a Marvell 88E3015 10/100 Ethernet PHY with RJ-45 connector, a

Xilinx Platform Flash XL 128-Mbit parallel NOR flash EEPROM for FPGA configuration

and bootloader storage, 32 NEC UPC2710TB amplifiers to boost the photomultiplier signals,

and a myriad of linear regulators for voltage regulation of each sub-circuit. Additionally,
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Figure 4.2: Each crimson daughterboard sports four PulseNet-V’s. Section contents are

shown in Figure 4.3. Photo Credit: Paul Horowitz.

each board has one 16-channel Analog Devices AD5390 DAC that is used for setting the

flash ADC reference voltages (VREF’s) for all four PulseNet-V’s on the daughterboard.

The daughterboards are 7.4′′ wide and 13.1′′ long. They are built on twelve layers: six

signal layers, four ground plane layers, and two split power plane layers (Figure 4.4). All

signal layers are impedance controlled. This is necessary for the DDR SDRAM data and

clock lines (200 MHz) and for system clock and GPS clock differential pair routing.

The top and bottom layers are used for photomultiplier tube analog lines and low speed

digital routing. Mid-layers 1–4 are high speed digital routing layers. Plane layers 1, 3, 4,

and 6 are solid ground planes (except 3) that are stitched together with vias throughout the

board. Plane layer 3 has an a isolated ground island under each Virtex-5 that is used as an

analog ground reference for the Virtex-5’s on-board 10-bit ADC. Plane layers 2 and 5 are
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Motherboard
Connector 1

Motherboard
Connector 2

PMT
Connector

PMT Signal
Amplifiers

PNP Buffer
Voltage Regulators
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Voltage Regulators Reflection SideDDR RAM

Amplifier
Voltage

Regulators

1:4 GPS
Clock Buffer

PMT
Connector

PMT Signal
Amplifiers

Amplifier
Voltage

Regulators

1:4 50MHz
Clock Buffer

DAC Voltage Regulator
16-Channel DAC

Platform Flash

10/100 Ethernet PHY
RJ-45 Connector

1.0V Regulator 2.5V Regulators

Transmission Side

PulseNet-V

Virtex-5

Figure 4.3: Top: This false color layout shows one of the four similar PulseNet-V sections

of the daughterboard, the “Duderino” area. The six signal layers from the top to bottom

are yellow, purple, aqua, mint, and green, respectively. Bottom: A schematic showing the

area’s contents.
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“TJ”

“Big L”

Front

Figure 4.4: Left: The area naming scheme for the daughterboard’s PulseNet-V locations.

Right: Daughterboard layer stackup.

highly split power planes that bring the many different bus voltages to each section of the

board. Care was taken to have ground planes adjacent to the top and bottom layers where the

PMT signal amplifiers are located. Previous daughterboards had exhibited coupled high-

frequency oscillations between signal amplifiers. The close-in ground plane reduces stray

inductances that help to prevent the amplifier oscillation. The power plane of each bank of

eight amplifiers was isolated and given individual linear power regulators to further increase

isolation between the amplifiers.
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4.1.3 Motherboard

The motherboard distributes common signals and power to the daughterboards and

mechanically supports them at the connector end. It has a Xilinx Spartan-6 LX45

FPGA for coalescing trigger outputs from the 32 PulseNet-V’s, and for collecting humidity,

temperature, and inclination angle from on-board sensors. The Spartan-6 is connected to

512 Mb of 16-bit wide DDR SDRAM, a micro-SD connector, two serial transceivers, a USB

serial transceiver, a Xilinx X32P serial Flash PROM for FPGA configuration memory, a

Marvell 88E3015 10/100 ethernet PHY, a Xilinx CoolRunner-II CPLD for daughterboard

JTAG programming distribution, a 1:8 LVDS clock buffer to distribute a master clock to the

daughterboards, two 1:8 LVDS clock buffers to distribute GPS clocks, a Xilinx Spartan-3

AN50 FPGA, and a Silabs C8051 microcontroller. The daughterboards are provided with

five supply voltages, 1.4 V, 2.8 V, 5.5 V, 6.0 V, and 12 V. The 1.4 V, 2.8 V, 5.5 V, and

6.0 V supplies are brought on to the motherboard with Phoenix Contact terminal blocks and

passed through to the daughterboards on 2 mm hard metric backplane connectors. The 12 V

rail is regulated down from 15 V on the motherboard with a linear voltage regulator before

making its way onto the daughterboard to power the 1.0 V regulator controller. Other signals

distributed to the daughterboards include the GPS 10 MHz and 1 PPS clocks, a 50 MHz

system clock, an I2C bus, JTAG lines, and trigger in/out signals. The GPS signals arrive

at the motherboard from a fiber translator in the camera that receives the GPS signals over

multimode fiber cables from a Symmetricom GPS clock located in the observatory control

room. The 50 MHz daughterboard system clock is generated by an ECS surface mount clock

oscillator on the motherboard and passed through the Spartan-6. The clock is then sent

through a 1:8 buffer and the eight outputs are distributed to the daughterboard connectors.
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Figure 4.11: The motherboard distributes power and global signals to the daugherboards.

A Spartan-6 on the board functions as the system-wide trigger for the 32 PulseNets-V’s.

Photo Credit: Paul Horowitz.
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Figure 4.12: Motherboard SDRAM and Ethernet Circuits
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Figure 4.13: Motherboard GPS and Clock Circuits
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Figure 4.15: Motherboard Spartan-6 I/O Banks (1 of 2)
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Figure 4.16: Motherboard Spartan-6 I/O Banks (2 of 2)
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Table 4.1: Spartan-6 Peripherals.

Name Desc IP Bus

microblaze Microblaze processor microblaze v8.20.a AXI
axi4 AXI bus 100 MHz axi interconnect v1.03.a AXI
axi4lite AXI-Lite bus 50 MHz axi interconnect v1.03.a AXI-Lite
microblaze dlmb Data mem bus lmb v10 v2.00.b DLMB
microblaze ilmb Instruction mem bus lmb v10 v2.00.b ILMB
MCB DDR Double data rate SDRAM controller axi s6 ddrx v1.03.a AXI
microblaze bram block 16k Bram Block bram block v1.00.a DLMB:ILMB
microblaze d ctrl 8k Local Data Mem lmb bram if cntlr v3.00.b DLMB
microblaze i ctrl 8k Local Instruction Mem lmb bram if cntlr v3.00.b ILMB
debug In-circuit debugging for Microblaze mdm v2.00.b AXI-Lite
microblaze intc Interrupt coalescing and control axi intc v1.01.a AXI-Lite
axi ethernetlite Ethernet Media Access Controller axi ethernetlite v1.00.a AXI-Lite
gpio pf GPIO controller for Flash axi gpio v1.01.a AXI-Lite
jtag dbrd GPIO controller for DBD JTAG axi gpio v1.01.a AXI-Lite
dbd iic I2C controller for daughterboard I2C bus axi iic v1.01.a AXI-Lite
inclinometer spi SPI controller for Inlcinometer axi spi v1.01.a AXI-Lite
microsd SPI controller for SD card axi spi v1.01.a AXI-Lite
axi timer Dual system timer axi timer v1.02.a AXI-Lite
rs232 uart 1 Serial port 1 axi uartlite v1.02.a AXI-Lite
rs232 uart 2 Serial port 2 axi uartlite v1.02.a AXI-Lite
jtag master JTAG bus master jtag master v1.00.a AXI-Lite
mbrd trig Trigger module mbrd trig v3.08.a AXI-Lite
clock gen Clock generator clock generator v4.02.a None
proc sys reset System reset controller proc sys reset v3.00.a None
gps10M buf Differential buffer for GPS 10MHz clock util ds buf v1.01.a None
gps1pps buf Differential buffer for GPS 1PPS clock util ds buf v1.01.a None
eth xo ff Ethernet 25 MHz clock util flipflop v1.10.a None

The Spartan-6 FPGA design contains a Microblaze embedded processor, DDR SDRAM

memory controller, 10/100 ethernet MAC, an I2C bus master, two serial ports, and the

motherboard trigger distribution module called mbrd trig. The Microbaze system design

is similar to the PulseNet-V design, mostly comprised of Xilinx library modules. The bus

that connects internal peripherals to the Microblaze processor is an AXI bus as opposed

to the PLB bus used in PulseNet-V. The AXI bus is a more recent bus standard and is

used for new Microblaze embedded system designs. The SDRAM memory controller of the

Spartan-6 is a hard silicon feature and is less flexible than the Multi-port Memory Controller

(MPMC) of the PulseNet-V Virtex-5 design. The data, address, control, and clock line pin

locations of Spartan-6 SDRAM controller are not adjustable. The full list of peripherals used

in the Spartan-6 design is shown in Table 4.1. The mbrd trig module is the only all-sky

proprietary module. It is described in the next section.
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Table 4.2: mbrd trig Configuration Registers

Register Num Bits Name Dir Description

Trig In 0 31:0 ins reg R State of the 32 trigger input lines from PulseNet-V’s
Trig Out 1 31:0 outs reg R State of the 32 trigger outputs lines to PulseNet-V’s
Ext Trig 2 0 ext trig in n R State of the motherboard’s external trigger input
Trig Mask 3 7:0 trig in n RW Daughterboard mask for mbrd triggers

Trig Status
4 2 count done R Indicates the end of the 2µs trigger timeout
4 1 trig or R An OR of the 32 trigger input lines and the external trigger
4 0 trig in only R An OR of only the 32 trigger inputs lines

Dbd Reset 5 0 dbd reset RW Resets all daughterboards
Trig Reset 6 0 soft reset RW Resets the mbrd trigger state-machine
PN Ser Sel 7 5:0 ser sel RW Selects a PulseNet-V for serial debug

Ready Status
8 2 ready override RW Debug override of pnet ready
8 0 pnets ready R Indicates all PulseNet-V’s active

Trig In 2 9 31:0 ins mailbox R State of PulseNet-V inputs during the last mbrd trigger

Trig Flags
10 1 ins mailbox flag R Indicates if ins mailbox has been read
10 0 gps mailbox flag R Indicates if gps mailbox has been read

GPS Timestamp 11 23:0 gps mailbox R State of GPS counter during the last mbrd trigger
GPS counter 12 23:0 gps counter R Direct read access to the GPS counter
GF1 13 0 gf1 flash nedge RW Neg edge activates the GF1
RSVD 14 31:0 N/A RW Reserved for furture use
GPS Level 15 0 gps level RW Invert the GPS 1PPS clock signal

Spartan-6 Trigger Module

The mbrd trig module’s main function is as the AdvCam’s system-wide trigger logic.

All trigger in and trigger out lines from the AdvCam’s 32 PulseNet-V’s are routed into the

module from the Spartan-6 pins. A state machine waits for one of the PulseNet-V trigger

lines to activate. When activated, the state machine will enter a state that holds all Spartan-

6 trigger output lines active-low for 2 µs. The PulseNet’V’s receive this Spartan-6 trigger

signal and follow a trigger sequence. When the PulseNet-V’s trigger sequence has completed,

it releases its trigger output. The mbrd trig state machine keeps its trigger outputs active-

low until all trigger signals from the PulseNet-V’s become inactive indicating they are ready

to be triggered again. The mbrd trig state machine then resets and reverts the trigger

outputs back to the initial inactive state.

The module contains a special feature that aids in debugging the PulseNet-V’s. During

boot, the PulseNet-V’s connect their default serial console to their trigger in and trigger out

lines. The mbrd trig module has access to these lines and can connect any pair to a serial

module in the Spartan-6 by setting a mbrd trig configuration register. A user connected
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to a Linux shell console of the the Spartan-6 (over telnet or hardware serial connection)

can watch the boot process of any PulseNet-V in the system using a simple Linux terminal

emulator.

A GPS counter for timestamping trigger events is also included in the module. This is

similar to the counter used in the PulseNet-V designs. Test flashes from the Gelfand Flasher

I are triggered by an output controlled by mbrd trig. This output is set by bit 0 of mbrd -

trig control register 13. The daughterboard’s 50 MHz master clock is generated by logic

mbrd trig. While it is currently a simple division by 2 from the Spartan-6 100 MHz master

clock, a PLL could be used to make the daughterboard clock frequency adjustable.

The mbrd trig is an AXI bus peripheral. The triggering options and status of the

AdvCam’s system-wide trigger are controlled through mbrd trig’s 16 configuration registers.

The registers are listed in Table 4.2. Register 0 and 1 are, respectively, the 32 trigger

input lines from the PulseNet-V’s and the 32 trigger output lines from the Spartan-6 to the

PulseNet-V’s. These registers are memory mapped I/O and are ephemeral. When a trigger

occurs, the state of the trigger inputs (register 0) are loaded into register 9. Register 4 has

additional trigger status information. The GPS counter also has a direct access register (12)

and a register that is loaded with the GPS counter value when a trigger occurs (register 11).

Flags that indicate whether the triggered GPS and trigger input registers have been read are

located in register 10. Triggering can be prevented on a by-daughterboard basis using the

trigger mask (register 3). This is useful during prototyping and debugging when only certain

daughterboard positions in the motherboard are populated. Also useful for debugging, the

motherboard has an external trigger switch that forces a system-wide trigger. The state of

this switch is shown in bit 0 of register 2. A hardware reset for all PulseNet-V’s is provided

in register 5. The PulseNet-V serial debug select line is in register 7; a 0x0 written to the

register selects PulseNet-V 0 (“Duderino” on daughterboard 7) and 0x1F selects PulseNet-V

31 (“Big L” on daughterboard 0). The ready status register (8) shows the status of the

pnets ready signal in bit 0. Each PulseNet-V has a pnet ready output that is OR’d by the

Spartan-3AN FPGA. The single OR’d output is sent to Spartan-6 and is the signal shown in

the ready status register. This signal, if not active-high, will prevent the mbrd trig module

state machine triggering so an override is available in bit 2 of register 8 for debugging

purposes. Finally, the GPS 1PPS clock signal can be inverted using register 15.
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Other Firmware

In addition to the Spartan-6, the Spartan-3AN and CoolRunner-II on the motherboard

require firmware to perform their functions. They use very simple VHDL designs and were

developed in Xilinx’s ISE design tool. The CoolRunner-II essentially acts as a JTAG switch.

A JTAG bus from the Spartan-6 is routed to the CoolRunner-II along with four address

lines. The CoolRunner-II design connects the JTAG bus from the Spartan-6 to one of the

eight daughterboard’s JTAG busses based on the state of three of the address lines. The

fourth address lines causes the JTAG bus input to come from a header on the motherboard,

not from the Spartan-6. The Spartan-3AN design is even simpler. The four address lines

pass through the Spartan-3AN before going to the CoolRunner-II; the Spartan-3AN acts as

a simple buffer. The reason for this complexity is to allow for the flexibility to use the lines

that are routed between the Spartan-6, Spartan-3AN, and CoolRunner-II in other ways if

a future need arises. The Spartan-3AN has an additional job that it must perform. One

single-ended GPIO pin from each PulseNet-V is routed to the Spartan-3AN. This line is

used as the pnet ready PulseNet-V output line. Pnet ready indicates that the PulseNet-V is

programmed, its pulsenetvd software is running, and it is ready to receive a coincidence

trigger. The Spartan-3AN AND’s these lines together. The output, pnets ready, is sent to the

Spartan-6. The Spartan-3AN also connects 10 I/O pins to a Silabs C8051 microcontroller on

the motherboard but the microcontroller is unused and is included in the design as a general

purpose resource.

Software

The Spartan-6 uses a custom Linux kernel as its operating system. The compiler and

kernel source were obtained from Xilinx. The Spartan-6 Microblaze processor uses an AXI

bus which requires that the little-endian Linux kernel be used. The process for compiling the

kernel was similar to the process for the PulseNet-V kernel (§ 3.4.1). A device tree from the

Spartan-6 FPGA design and a kernel config file with the necessary options were produced

and used during the kernel compile process. The Spartan-6 has one daemon program running

on top of the kernel, mbrdd. The daemon program listens for connections on a TCP socket

and responds to messages that are sent from the host. The commands and protocols are
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Spartan-6 Motherboard Communication Protocol

T

L

V

Tag - 1 byte

Length - 2 bytes

Value - L bytes

Tags are positive number when sent from
  host to Spartan-6.  Replies are with 
  negative numbered tags.
All multiple byte values are sent MSB first.

reset

telemetry
telemetry reply

pnet not ready -34 1 32

mbrd trigger

set register
echo set register

read register
read register reply

30

 4
-4

-33

 15
-15

 16
-16

1

0
15

12

5
5

1
4

32
echo reset 30 1

ContentsName : NumBytes

Command  T L V                                                  

  32 Humidity:2 HumidityTemp:2
InclinometerVcc:2 InclinometerTemp:2
InclinometerAngle:2 Inclinometer180:2
InclinometerADC:2

TriggersIn:4 TriggersOut:4 GPS:4

RegNum Value:4

RegNum
Value:4

pnet ready -32 1 32

Figure 4.18: Spartan-6 Motherboard Communication Protocol

shown in Figure 4.18. In addition to responding to host messages, mbrdd will send a message

to the host when a PulseNet-V trigger is received and if the pnets ready signal changes. A

driver for the mbrd trig module handles trigger and pnets ready interrupts by writing trigger

data to a kernel buffer and then writing the trigger time to the \dev\mbrd device. Similar

to pulsenetvd, mbrdd polls the \dev\mbrd device waiting for data from the kernel driver.

When the poll returns the trigger time, the mbrdd program reads the kernel buffer and sends

the trigger data to the connected host.
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Spartan-6 FPGA Config

The Spartan-6 configuration flash memory is a 32Mbit serial flash, the Xilinx XCF32P.

The XCF32P has a JTAG port and can be programmed directly by the Xilinx USB

Programming Cable. Spartan-6 designs bitfiles are turned into MCS flash programming

files with the U-boot bootloader appended to the end of the file, following the FPGA

configuration. The MCS file can then be programmed to the XCF32P. The Spartan-6

is initialized with a stage-1 bootloader that resets the XCF32P and locates the stage-

2 bootloader within the serial flash. The XCF32P is specifically designed as FPGA

configuration memory, and as such can only be accessed serially. The Spartan-6, after

configuration, connects to the serial flash clock, reset, and data lines through a general

purpose I/O core (axi gpio v1̇.01a). Initialization of the serial flash involves resetting the

flash and toggling the clock line, which increments the read address, until the bootloader

code appears on the data lines. The stage-2 bootloader code for the Spartan-6 exists in the

XCF32P directly after the FPGA configuration data. It is copied into a high DDR SDRAM

address (0x53000000) and then executed. U-boot downloads the Spartan-6 motherboard

kernel from a TFTP server (Costas), uncompresses it, copies it into place in DDR SDRAM,

and then starts execution at the beginning of the kernel address space.

PulseNet-V JTAG Config

Testing and debugging requires fast and reliable FPGA reconfiguration, both during the

camera prototyping phase and in production. Consequently, JTAG access to each PulseNet-

V, which is used to hot-load a new FPGA configuration, is an important feature of the

Advanced All-Sky Camera. The motherboard Spartan-6 handles JTAG communication for

each of the 32 in system PulseNet-V’s. A JTAG bus connects the Spartan-6 to a Xilinx

CoolRunner-II CPLD which acts as a multiplexer for the JTAG bus. A separate address bus

controls which daughterboard (0-7) the CPLD targets. Once a daughterboard is selected, the

Spartan-6 is directly connected to the JTAG chain for that daughterboard and can access

any of the 4 PulseNet-V’s on the daughterboard. The Spartan-6 uses a general purpose

I/O controller to toggle the JTAG bus pins. A user-space program called xsfttool-mbrd

takes as parameters the daughterboard number and SVF file to program. An external JTAG
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Daughterboard 0

JTAG chain

CPLD

Spartan-6

10-pin
JTAG
header

JTAGAddr

Mux

Motherboard

Virtex
5

Virtex
5

Virtex
5

Virtex
5

Daughterboards 1-7

Virtex
5

Virtex
5

Virtex
5

Virtex
5

Daughterboard  Connectors

Figure 4.19: The motherboard Spartan-6 is used to reconfigure the Virtex-5 FPGAs using

the JTAG bus. A CoolRunner-II CPLD multiplexes the Spartan-6 JTAG to one of the eight

daughterboard JTAG chains.

programmer can also be used to reconfigure the PulseNet-V’s. In this case, the CoolRunner-II

CPLD is set to accept a JTAG bus from a pin header to forward to a specific daughterboard.

The daughterboard address must still be set using the Spartan-6.

4.1.4 Server

The camera electronics are very closely integrated with a server computer called Costas.

Costas is a custom built PC with a quad-core Intel processor with two mirrored RAID arrays,

one for the operating system and one for the database. Costas provides the Linux kernels

that the Microblaze processor boots when the camera is powered on. Each PulseNet-V

first loads the U-boot bootloader. U-boot knows the IP address of Costas and requests

the Linux kernel using the TFTP protocol. When the kernel file is downloaded from

Costas, U-boot uncompresses it, loads it into memory, and directs the processor to begin
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execution of the kernel out of DDR SDRAM. During the boot process, Linux must mount

a filesystem. This filesystem is located on the Costas operating system RAID array in the

directory \srv\common. The booting Linux kernel of every PulseNet-V mounts this read-

only directory as the filesystem root using the Network File System (NFS) protocol. The

final stage of booting is the execution of the rcS script. This script mounts a writeable

directory \var\pn[0--31], again using NFS, so that each PulseNet-V has a private location

to store system logs, temporary files, and the NTP drift file.

4.1.5 Other Camera Equipment

The completed camera includes a number of other pieces of electronic equipment. To

receive the GPS signals from a Symmetricom GPS clock unit in the observatory control

room, a fiber-translator transmitter/receiver pair are used. The transmitter is located in

the control room next to the GPS clock and transmits the electrical clock signals into two

multi-mode fiber cables. The fibers are run from the control room into the telescope bay

and enter the camera at a fiber-to-fiber coupling. The fiber receiver sits atop the circuit

board rack and converts the optical signal back to an electrical signal that is connected to a

header on the motherboard. An AxiomTech Pico820 single-board-computer also sits on top

of the circuit board rack. This single-board-computer (SBC) has an Intel Z510 processor

with a 8GB solid-state disk that is configured to boot an Ubuntu Linux distribution. It also

mounts a writeable NFS folder on Costas for extra storage space. The SBC is connected to

the USB serial transceiver on the motherboard and also to a Xilinx USB Programming

Cable II. The programming cable’s socket is plugged into the motherboard’s Spartan-6

JTAG header. The purpose of the SBC is for reprogramming the motherboard’s Spartan-

6 configuration flash memory if it becomes corrupted or needs to be updated. Through

the USB serial connection, it also has dedicated hardware access to the Spartan-6’s serial

port. Ethernet connections are provided for the 32 PulseNet-V’s, the Spartan-6, and the

SBC by three 16-port 10/100/1000 Netgear switches mounted to the camera frame between

the photomultiplier and circuit board compartments. Startech.com MCMGBSC055 gigabit

multi-mode fiber media converters make the connection between Costas and the upload port

of one of the Netgear switches.
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Table 4.3: The main control application oseti.py contains numerous additional files for

controlling each of the observatory subsystems.

Filename Purpose

oseti.py Main application
astronomy.py Calculates sunrise, sunset, moon position, etc.
automation.py State machine for automated observational control
barndoors.py Retrieves status of barn doors
fits2jpg.py Converts skycam FITS files to jpg
FitsFile.py Library for importing FITS files
gf2.py Conrols movement of Gelfand Flasher 2
json.py Library for producing json from python objects
observations.py High level observating control functions
oseticameras.py Grabs images from 4 observatory cameras
osetiencoder.py Retrieves index and count from telescope encoder
osetievent.py Event definitions for postgres database
osetiexptctrl.py Advanced All-sky Camera control
osetipower.py Interface to Shulsky box for power control
osetiroof.py Interface to Roof Controller
osetiserial Generic class for serial port interfaces
osetistate.py Postgres database table definitions
osetitelescope.py Telescope control interface
osetitwitter Uploads coincidence events to Twitter
osetiutil.py Various utility methods
osetiweather.py Retrieves weather data from web
skyCamera.py Interface to wide-field night sky camera
Sopen.py Library for opening system files
systemMonitor.py Captures system usage statistics
telescopeCalibration.py Calculates star positions and telescope pointing
weatherstation.py Retrieves data from observatory weather station

4.2 Camera Control

The main application which controls the Advanced All-sky Camera, roof, and telescope

and automates observations is written in the python programming language. This application

is split into the main file oseti.py and more than 25 other python files each representing

a different subsystem. For example, osetiroof.py contains the RoofDriveSubsystem class

and functions for sending commands to the roof controller via the PC’s serial port. The

osetiexptctrl.py file contains the class ExperimentControlSubsystem and functions for

opening ethernet sockets to the PulseNet-V and Spartan-6 FPGAs, functions for sending

commands to the FPGAs, and functions for interpreting the responses. Table 4.3 lists all

the python files included in the oseti.py application and their purpose. A primary function

of oseti.py is to start a web service that accepts and responds to HTTP Get and Post

commands on a web socket. Web addresses are translated by oseti.py into either requests

for data (often a web page or template) that is sent back to the client web browser or
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commands that are executed. Apache2 is used as the front end web server and python’s

CherryPy module converts the web addresses passed from Apache2 into python function

calls to be executed. For example, https://costas ip address/gotoOpen corresponds to a

function call that will fully open the roof and https://costas ip address/doFixedFlash sends

a test flash of light to the camera. The state of the observatory and camera, such as the

angle of the telescope and temperature inside the allsky camera, are stored in a Postgresql

database running on Costas using the python Sqlobject library. Any data recorded by the

camera is saved in the same database. The database and operating system are stored on

separate physical magnetic hard disk drives and they are RAID mirrored to protect against

data loss in case of drive failure.

Much of the oseti application was written for the original all-sky system and is

carried over for use with the Advanced All-sky Camera. Extensive changes were made

to osetiexptctrl.py to support 33 socket connections to the 32 PulseNet-V’s and the

motherboard Spartan-6. Notably, the coincidence event data is much larger, 262,144 bytes

vs 384 bytes, and is sent in a zlib compressed form. Additionally, all Virtex-5 FPGAs send

coincidence data when any one PulseNet-V is triggered, resulting in a deluge of data arriving

at Costas via ethernet in a short period of time. The coincidence data is interpreted and

saved in the database using functions that are called by 40 available worker threads. This

is so the work can be done in parallel by Costas’ quad-core Intel processor. The camera

is controlled by messages that are sent over ethernet to each of the PulseNet-V’s and the

Spartan-6. The message protocols were shown previously in Figures 3.8 and 4.18. During

observations, the generation of all control messages is automated by the new code that has

been added to osetiexptctrl.py.

4.2.1 Web User Interface

The user interface (UI) for the original all-sky system has been described in § 2.6.1.

The AdvCam required changes, however, to the UI to accomodate the extra telemetry

information that is produced by the camera. The AsCam relayed the voltages of two 2.5 V

rails, two 5 V rails, a 3.3 V supply, a 15 V supply, and the eight system-wide DAC reference

voltages. The AdvCam reports many more voltgages. For each of the 32 PulseNet-V’s, the
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Figure 4.20: User interface telemetry panel

FPGA core voltage, I/O voltages, and auxilary voltages are telemetered. In addition, every

daughterboard has its own DAC reference voltages so 64 reference voltages are read by the

system. A display of the UI telemetry panel is shown in Figure 4.20.

4.2.2 Processing Application

The activity of the all-sky system is visualized through the web interface using a web

browser. An independent application for visualizing the astronomy counters was warranted,

however, because the update rate of the web interface is a few times a minute. The astronomy

counts can be generated as fast as once a second. In order to make use of these fast update

rates, an application using the Processing programming language was written. Processing

is a java-based language that makes visual applications easy to program. A scalable vector

graphic (SVG) of the photomultiplier tube array from the web user interface is imported into

the Processing sketchbook and the astronomy counts are painted onto the photomultiplier

pixel areas according to a blue-to-red colormap. The Processing sketchbook called astro -

count receives the counts via UDP packets that are sent from each PulseNet-V to Costas

by the astro udp daemon. A remote user can use a network program like socat to have

Costas forward the UDP packets to the user’s computer. An example astro count image is
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shown in Figure 5.23.

4.3 Future Enhancements

One drawback of the Advanced All-sky Camera is its trigger dead-time. This could be

reduced to zero (assuming the average rate is low enough) by using only half of the sample

memory for the first trigger. A second trigger could be handled immediately by using the

other half of the sample memory while the first half is copied into main memory. Another

area that could be enhanced are the trigger threshold settings. Currently, one threshold

VREF level is common to every pixel pair in the system. As noted in § 2.4.1, the Hamamatsu

H7546B-20 photomuliplier tubes are multi-pixelated. A major difficulty with these detectors

is their gain variation between pixels. It can vary by at least 1:3. Pixels with higher gain are

more likely to trigger the system at any given threshold than lower gain pixels. Sensitivity

suffers since the low gain pixel require more light to trigger. Lowering the trigger threshold

would cause a surfeit of trigger events from the high gain pixels. One potential solution

would be to use two separate VREF’s as thresholds. The trigger hardware would be set to

use the higher threshold VREF for high gain pixels and the lower threshold VREF for low gain

pixels. This could of course be extended to have as many thresholds as there are VREF’s

in the system (8), however more than two or three thresholds likely wouldn’t provide much

benefit.

Looking further into the future, the price and power usage of high-speed ADCs may

eventually come down to a point where it feasible to use a dedicated ADC for every channel.

A new camera featuring 8-bit, 1 Gsps ADCs and the latest FPGAs could then be constructed,

greatly enhancing the quality of the PMT signal data. Due to the demanding data rates of

the gigasample-per-second sampled data, the coincidence triggering is currently an entirely

localized process where each ADC channel pair has its own trigger circuitry. A pattern trigger

that operates on the full complement of pixels as an image could be a useful addition to the

trigger system especially if the all-sky system were to be scaled to a much larger telescope.

With a large collecting area, Čerenkov flashes would more often cause coincidence triggers.

A pattern trigger might be able to recognize the image pattern of the cosmic ray induced

Čerenkov flashes and prevent the system from triggering. The implementation of this type
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of system at the 3-bit, 1 Gsps data rates of the Advanced All-sky Camera would require a

central pattern trigger FPGA with an input bandwidth of least 3 Tbits/s. The latest FPGA’s

can almost achieve these rates. Xilinx’s Virtex-7 FPGAs have a maximum serial bandwidth

of 2.7 Tbit/s. Data stream compression could be used if the available raw bandwidth is

not sufficient or to make the system more energy efficient. In the pattern trigger system,

high-speed serial links (10 Gbps) would transport the compressed data streams from 64

Virtex-7 FPGAs to a central trigger FPGA that would reconstruct the compressed streams

and construct a trigger using any combination of pixel data. A trigger would cause the

Virtex-7 FPGAs to record sampled data in block RAM, just as the AdvCam functions.

Arbitrary trigger patterns could be set if all data streams are available at a single “trigger”

FPGA. Signal quality, sampling speed, sample record length, and triggering capability would

all be enhanced but more power would undoubtedly be required, especially if external ADCs

are used. In order to save power, a switched capacitor array (SCA) could be used as an

analog delay line, along with a simple discriminator, to power down the ADC if the signal

is below an adjustable threshold.
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Chapter 5

Advanced All-Sky – Testing and

Observations

5.1 Testing

The Advanced All-sky SETI camera is a complex instrument with numerous levels of

hardware and software that needed to be tested for proper function. While a large part of

the feature tests were performed on an on-going basis during development, a few final tests

were conducted to verify full functionality and to characterize its performance. This section

describes the testing of the samplers and their ability to trigger on pulses. Once the camera

was fully functional, the PMT voltage settings were explored and the astronomy count rates

across the range of threshold voltage settings were characterized.

5.1.1 Sampler Performance

To test sampler performance, test pulses were sent to PulseNet-V using an HP8082A

Pulse Generator through a test signal breakout board. Pulses were captured with a Tektronix

MSO4104 oscilloscope using P6243 1 GHz FET probes (<1 pF). The probes were placed at

the pulse generator output, after the photomultiplier signal amplifier, and at the Virtex-5

input via. For these pulse tests, the samplers were run at 1.5 gigasamples-per-second to

evaluate the maximum speed and performance of the LVDS flash converters. The threshold
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voltages are changed to accommodate the different two test cases. The first is a 20 ns full scale

double pulse (Figure 5.1) and the second is a low-level, 4 ns 40 mV double pulse (Figure 5.2).
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From the pulse waveforms, we can see that for full-scale and small-scale pulses, the

samplers track the input signal fairly well. This is also a verification that the trigger circuits

can trigger on both large and small pulses. The input pulses from the pulse generator had

<1 ns rise time; it is clear that the input capacitance of the Virtex-5 pins slow the signal

rise times. Since the rise-time from the test pulses is 3–5 ns, the total signal bandwidth into

the PulseNet-V samplers is roughly around 100 MHz.

The threshold offsets and noise floor of the system were tested by varying the astronomy

counter reference voltage with no signal connected to the sampler inputs (photomultiplier

high-voltage power supplies turned off). As the reference voltage gets close to the bias level,

the astronomy counts increase markedly; the noise floor causes the input signal to cross the

counting reference voltage level. The results of this test on the full camera show that a

reference level of 25 mV below bias is above the noise floor for all of the system’s 1024 flash

ADC channels. The threshold offsets for the PulseNet-V are therefore less than ∼25 mV.
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Figure 5.2: A low-level pulse sampled at 1.5 gigasamples per second. The input signal,

measured at a Virtex-5 input pin using a Tektronix 4104 Oscilloscope with FET probe, is

shown in red, and the black trace represents the sampled version of the input signal.
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5.1.2 PMT Voltage

The Advanced All-sky Camera sees the sky with its photomultipler tubes, so their

performance is of utmost import. The PMTs degrade in relation to the amount of time

they are used and the light intensity level at which they are used. To maintain a reasonably

long life for the tubes, they should only be operated on dark nights and at a proper power

supply voltage. The ideal supply voltage to ensure safety and long life while achieving

maximum light sensitivity is a compromise between lifetime and sensitivity. In a photon

counting mode, the supply voltage must be high enough for single photons to be counted by

the electronics. Increasing the supply voltage can increase the single electron pulses above

the noise floor but too much voltage can cause increased dark count rates. Application of

too high a supply voltage may result in secondary emission, overheating of dynodes, loss

of vacuum in the PMT glass envelope, loss of gain, and permanently increased dark count

rates.

The Hamamatsu H7546B-20 photomultiplier tubes are multi-anode devices with a spread

of pixel gains. The gain of each pixel cannot be individually adjusted because all anodes

operate from the same high voltage supply. Therefore each pixel has a different gain, count

rate, and pulse distribution. Because each PMT has so many individual anodes, setting

the high voltage supply to achieve maximum camera sensitivity and safety in all pixels is

not trivial. To understand the relationship between count rates, pulse distribution, and

high voltage supply, the PMTs were characterized using the AdvCam’s upgraded astronomy

counter features. The two measurements shown in Figures 5.3 and 5.4 are count rates

vs. supply voltage and count rates vs. threshold voltage, respectively. Plotting count rates

vs. supply voltage helps to determine how to set the supply voltage consistently across all

16 photomultiplier tubes. The count rate vs. threshold plot series indicates the pulse height

distribution of each pixel at a given supply voltage.

The PMT supply voltage setpoints are chosen by measuring photo-electron count rates

while sweeping the supply voltage from 600 V to 900 V. For each pixel, the supply voltage

at which the counters detect ∼1000 counts·sec−1 while the shutter is closed is displayed

next to the plot (Figure 5.3). The red plots shows the reflection side photomultiplier pixels

and the blue plots show the transmission side photomultiplier pixels. A consistent gain
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across the various PMTs is achieved by setting the supply voltage so that the PMT pixels

have a dark count of ∼1000 counts·sec−1. This setting cannot be satisfied for all pixels at

the same time so an average of the PMT’s 64 pixels is used. This 1000 counts·sec−1 level

corresponds roughly to the point where the count rates vs. supply voltage plot starts to level

off. Generally, photomultiplier tubes’ supply voltage is set to the point of minimum slope,

however this would present a danger of tube damage at higher light levels. Figure 5.3 shows

the count rates for PMT pair 0, the plots of the other 7 PMT pairs were measured and

plotted but are not shown here.

After setting the supply voltage, an additional test of the astronomy counters was

performed to get an indication of the count rate variation in different pixels. In Figure 5.4,

the astronomy counts for each pixel in PMT pair 0 are plotted as the astronomy VREF is

varied from from 25 mV to 100 mV. For this test, the telescope is pointed at zenith on a

dark night. At 25 mV, the gain variation across pixels causes the central PMT pixels to

provide count rates of 105 s−1 while the edge pixels have count rates 2–3 orders of magnitude

lower. The matching of paired pixels (red and blue) is not perfect either, though the count

rate difference between matched pixels of different PMTs tends to be much less than the

difference between center and edge pixels within a PMT.
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Figure 5.3: This figure shows the astronomy count rates (VREF − VBIAS=25 mV) of PMT

pair 0 with the shutter closed at PMT supply voltages between 600 V and 900 V. The supply

voltage set point is chosen for a count rate of 1000 counts·sec−1 with the camera’s shutter

closed.
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reference voltage (VREF) is varied from 25 mV to 100 mV below the bias voltage.
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5.1.3 Camera Trigger Sensitivity

To characterize the trigger rate at low threshold voltages, the number of pixels triggered

in a one minute interval was recorded while varying the threshold voltage. This test was

performed in five conditions:

1. High voltage off, shutter closed, pixel pairs unlinked (no coincidence requirement).

2. High voltage off, shutter closed, pixel pairs linked (coincidence required to trigger).

3. High voltage on, shutter closed, pixel pairs unlinked.

4. High voltage on, shutter closed, pixel pairs linked.

5. High voltage on, shutter open, telescope pointed at zenith on a dark night, pixel pairs

linked.

Results can be seen in Figures 5.5, 5.6, 5.8 and 5.9. The test show that with the channels

linked, the threshold can be set much lower than 150 mV, which is a significant improvement

over the original all-sky camera. The AdvCam could be operated with a threshold voltage

as low as 60 mV and trigger less than once per minute. Operation at lower thresholds, down

to ∼25 mV, is limited by the night sky background photon arrival rate and photomultiplier

dark currents, not by on-board digital noise sources such as clock coupling or power-supply

switching noise.
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Figure 5.5: Sensitivity of the AdvCam by Pulsenet-V channel number. Conditions: One

minute. Channels not linked. High voltage off.
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Figure 5.6: Sensitivity of the AdvCam by Pulsenet-V channel number. Conditions: One

minute. Channels linked. High voltage off.
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Figure 5.7: Sensitivity of the AdvCam by Pulsenet-V channel number. Conditions: One

minute. Channels not linked. High voltage on. Shutter closed.
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Figure 5.8: Sensitivity of the AdvCam by Pulsenet-V channel number. Conditions: One

minute. Channels linked. High voltage on. Shutter closed.

150



0 20 40 60

0
6

12
18
24
30
36

__
__

__
Pu

ls
en

et
-V

s T
rig

ge
re

d

Pulsenet-V channel 12

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 13

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 14

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 15

0 20 40 60

0
6

12
18
24
30
36

__
__

__
Pu

ls
en

et
-V

s T
rig

ge
re

d

Pulsenet-V channel 8

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 9

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 10

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 11

0 20 40 60

0
6

12
18
24
30
36

__
__

__
Pu

ls
en

et
-V

s T
rig

ge
re

d

Pulsenet-V channel 4

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 5

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 6

0 20 40 60

0
6

12
18
24
30
36 Pulsenet-V channel 7

0 20 40 60
______

0
6

12
18
24
30
36

__
__

__

Vthresh(mV)

Pu
ls

en
et

-V
s T

rig
ge

re
d

Pulsenet-V channel 0

0 20 40 60
______

0
6

12
18
24
30
36

Vthresh(mV)

Pulsenet-V channel 1

0 20 40 60
______

0
6

12
18
24
30
36

Vthresh(mV)

Pulsenet-V channel 2

0 20 40 60
______

0
6

12
18
24
30
36

Vthresh(mV)

Pulsenet-V channel 3

Figure 5.9: Sensitivity of the AdvCam camera by Pulsenet-V channel number. Conditions:

One minute. Channels linked. High voltage on. Shutter open. Telescope pointed at zenith

on a dark night.
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5.2 SETI Observations

5.2.1 Observation Procedure

Observations are performed on a semi-automated basis. At the beginning of a night

of observations, an operator logs into the observatory’s web interface and enables the

“Automated Observation” mode. The observatory then operates under software control.

The control software runs through a state machine that runs continuously until the operator

disables automated observations or shuts down the system. The automated observation state

machine starts by checking for “good observing” conditions, i.e the weather conditions, time

of day, and equipment status. The system clock is checked to verify that time is between

evening and morning twilight. A daylight sensor must indicate that it is dark, and the

rain sensors must not detect rain. Additionally, the core temperature of all PulseNet-V’s

must read <180F◦ and there must not be any downtime currently scheduled for the good

observing condition function to return true. If all these conditions are satisfied, the state

machine will continue readying the building for observations. The building is readied by

opening the roof, opening the shutter, and powering on the telescope drive. When the roof

has fully opened, the state machine starts the telescope calibration procedure. The state

machine waits for the telescope to finish calibration and then turns on the AdvCam and

the PMT high-voltage supply. When the camera is ready, the state machine enters the

observing loop. In the observing loop, if an observation is not in progress, a new observation

is chosen as the current observation. The observation that is chosen can be one that has been

scheduled previously or, if there are none scheduled for the current time, the parameters of

an automated observation will be calculated. Automated observations are always scheduled

for thirty minutes but manually scheduled observations can be any reasonable length. The

state machine next moves the telescope to the declination of the chosen observation. At the

beginning of the observation, the PulseNet-V’s are programmed and armed to trigger. A test

flash is sent from the Gelfand Flasher and the number of trigger channels is counted to make

sure that all pixels were triggered and, hence, functioning properly. The PulseNet-V’s are

re-armed and then the observing mode is set to “Observing”. The state machine will allow

the observation to proceed until the scheduled observing duration has passed (normally 30
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minutes). At that point, there is no current observation and the state machine begins the

observing loop again. This process continues until the observing conditions are no longer

favorable. If any one of the “good observing” conditions is false, the telescope will be lowered

if it is raised, the roof will be closed if it is open, and the observatory electronics will be

powered down.

5.2.2 Observation Summary

The first observations with the Advanced All-sky Camera were performed on September

11th, 2012. As of March 31st, 2013, 174.4 hours of observations have been completed,

covering 3,602 square degrees. Figure 5.10 shows an equatorial sky map of the observation

locations. Within these 174 hours, 318 coincidence events were recorded. Of these events, 306

were triggered by single pixels and 12 events had multiple pixels triggered. The coincidences

are not distributed evenly across PulseNet-V’s and photomultiplier tubes. This can be seen

in Figure 5.11. PulseNet-V numbers 0–3 and 8–11 have at least 18–25 events each and

PulseNet-V number 8 has nearly 40 events while numbers 4–7 and 12–19 have only a few

each. This is most likely an effect of the photomultiplier tubes. Photomultiplier numbers 7

and 5 are handled by the PulseNet-V’s with the most events. It is possible the high-voltage

applied to these photomultipliers is set higher relative to the other photomultipiers in the

system. It is also possible that these photomultipliers experience greater large-amplitude

noise pulse events leading to more random coincidence events.

In general the coincidence events can be split into three broad categories: single pulses of

a few nanoseconds that trigger multiple pixels, single pulses of a few nanoseconds that trigger

single pixels, and events of microsecond duration consisting of many single photo-electron

pulse. We believe these correspond, respectively, to cosmic rays, photomultiplier tube dark

currents and photon pileup, and airplanes. The coincidence types are described in the next

sections.
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Figure 5.10: The Advanced All-sky System has observed for 174.4 hours and covered 3,602

square degrees.
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Figure 5.11: The distribution of events across PulseNet-V is not uniform. PulseNet-V’s

numbered 0–3 and 8–11 contribute to a much greater number of coincidence events. This

could be due to the photomultiplier tubes serviced by these PulseNet-V’s having higher gain,

the supply voltage may being set too high, or the tubes having more frequent large-amplitude

pulse events due to ion-feedback.
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5.2.3 Dark Current and Pileup

The majority of coincidence events are single-pixel triggers that only reach the trigger

threshold level or one level higher in amplitude. A typical example of the array image and

the pixel waveform is shown in Figure 5.12. In the photomultiplier array image (top of

Figure 5.12), the pixels are colored with a blue to red color mapping according to the charge

accumulated over a 22.5 ns window centered around the trigger sample. Blue pixels indicate

zero charge accumulated and the pixel with the most charge accumulated is colored red. In

Figure 5.12, only the triggered pixel pair show any charge accumulation which means that

the other photomultipler pixels in the array showed very little activity at the time of the

trigger. Another indication that this is a coincidence due to a random independent large-

amplitude pulse in the pixel pair is the dissimilar shape of the waveforms on the transmission

(left) and reflection (right) sides. The reflected side pulse is about 5 ns wide whereas the

transmitted side pulse is about 2 ns wide. These are the hallmarks of a random coincidence

as a result of night sky background light or dark current from the photomultipliers. About

85% of the coincidence events fit the random pulse description, i.e. a single pixel, single pulse

event.
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Figure 5.12: An example of a common single-pixel, single-pulse coincidence event is shown

here. No other pixels show activity at the time of the trigger and the pulse event itself is of

low amplitude and non-repeating.
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5.2.4 Airplanes

Another category of common triggers are evidently caused by overhead airplanes. The

FAA requires all aircraft to have anti-collision and position lighting systems for night

operation. Lighting position, color, and intensity is specified by Special Federal Aviation

Regulation No. 23, parts 1381-1401. In short, most aircraft have aviation white or red

position lights on the tail and fuselage, red and green positional lights on the port and

starboard wingtips, as well as strobe lights on the tail and wingtips. The strobe lights

must have a frequency of 40 to 100 cycles per minute. These aircraft lights, particularly

the strobe lights, can cause a false trigger in the camera. The typical strobe width is much

longer than the ∼2-5 ns single photo-electron pulse width of the photomultiplier tubes, and

the strobe light is much brighter than any star in the sky. If the strobe is bright enough it will

cause multiple photo-electron pileup, exceeding the trigger threshold. The signature of an

airplane induced trigger can be seen by viewing full 10 µs sample record of Coincident Event

#964311 (Figure 5.13). This airplane induced trigger is composed of many single photo-

electron pulses of small amplitude (∼125 mV). In the brightest portion of the strobe pulse,

the photo-electron pulses overlap, reaching the threshold level (Vthresh=1.22 V or 280 mV

below the bias level) in both pixel pairs at the same time. The smoking gun attributing this

coincidence event to an airplane is seen when viewing the skycam image just a few seconds

before the time of the trigger. A bright streak in the photograph points directly into the

telescope’s field of view (Figure 5.14). The bright lines here are the light of an airplane. The

skycam photograph of Figure 5.15 provides a better illustration of the skycam images.

The All-sky Observatory’s meteor sky camera (skycam) provides a secondary way to

verify the identity of any camera triggers. The skycam is directed to take a 90◦ × 120◦,

ten second exposure every ninety seconds and whenever a trigger occurs. The southern

horizon and nearby trees are seen at the bottom of skycam images. In the skycam image

of Figure 5.15, a long streak can be seen with bright spots along its length. The constant

brightness streak is from an airplane’s positional lighting system while the bright spots are

from the anti-collision strobe lights. The airplane’s contrail is also visible against the darker

night sky. Since the skycam has no shutter, the intense airplane lights accumulate in the

CCD pixels as they are being read from the sensor and appear in the image as a horizontal
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Table 5.1: Aircraft minimum effective intensities for anti-collision lights.

Angle Above and Below Horizontal
Plane Effective Intensity (candles)

0◦ to 5◦ 400
5◦ to 10◦ 240
10◦ to 20◦ 80
20◦ to 30◦ 40
30◦ to 75◦ 20

streak.

Airplanes are not an insignificant portion of the total observational triggers (5-10%)

but are recognizable by examining the skycam images and the event record. The digitized

waveforms of the airplane trigger events contain many single photo-electron pulses reaching

the first VREF level and some multiple photo-electron pulses reaching the second or even

the third VREF level. If the number of pulses above the first VREF (single photo-electron

level) are counted, the sum can give an indication of whether the waveform was caused by

a very bright and long flash, indicative of an airplane strobe. Plotting the number of pulses

versus the time of night for every trigger event shows when airplanes are most likely to cause

camera triggers (Figure 5.16). The hours between midnight and 4 A.M. are, as expected,

the best for avoiding airplanes.
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Figure 5.13: This coincidence event triggered one pixel but is seen in a cluster of five pixels.

The waveform is a ∼9 µs pulse composed of many single-photoelectron bursts that overlap,

causing the camera to trigger as the flash of light increases in intensity.
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Figure 5.14: The skycam image from the event in Figure 5.13. The line in this skycam

photograph is due to an airplane that had a chance crossing with the telescope’s field of view

(red box) causing the camera to trigger. This image was captured before the trigger event.

Unrelated to the camera trigger, there is a second airplane seen to the West, illustrating the

common appearance of airplanes in our skies.
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Figure 5.15: A different skycam image, with annotations of the features in the image.
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Figure 5.16: The number of pulses within the trigger waveforms can be used to distinguish

the airplane induced trigger events from other types. Here we have plotted the trigger time

of the 318 trigger events in the AdvCam observing database versus the number of negative-

going pulse edges in the triggered pixel’s waveform.
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5.2.5 Cosmic Rays

A typical cosmic ray coincidence trigger image is shown in Figure 5.17 and the

corresponding waveforms of four pixels pairs from this event are shown in Figure 5.18.

Cosmic ray events are typically characterized by multiple triggered pixel pairs in one PMT.

The 10µs digitized waveform from the triggered pixels of these events normally contains only

a single 2–10 ns pulse of moderate to high amplitude. The shape and size of the image varies

between cosmic ray events. The size typically spans an entire photomultiplier tube but less

than the distance between PMTs. The pulse is never seen in two photomultipliers viewing

different portions of the sky. Eighteen cosmic ray events have been identified out of the 318

coincidence events recorded by the AdvCam. The event images are shown in Figure 5.19.

For compactness, only the PMT pair in which the event was seen is displayed in the figure.
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Figure 5.17: Cosmic ray coincidences typically span an entire PMT and have more than one

pixel pair triggered. The pulse from the Čerenkov flash is generally a few nanoseconds long

and of moderate to high amplitude.
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Figure 5.18: The waveforms of four pixels from the event seen in Figure 5.17 are shown

above.
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Figure 5.19: Eighteen cosmic ray coincidence images have been recorded by the AdvCam.

Only the triggered PMT pair are shown above. The pixel color within the PMT pair

corresponds to accumulated charge normalized to a blue (low) to red (high) color map.
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5.3 Cosmic Ray Simulations

The suspected cosmic ray coincidences deserve some extra attention as they exhibit pulses

on the nanosecond scale, similar to what might be expected from a pulsed laser transmitter.

A series of simulations were performed to compare the suspected cosmic ray coincidences

to the appearance of the imaged Čerenkkov light from cosmic ray induced extensive air

showers. A natural first question is “How should cosmic rays look as viewed from the

telescope’s perspective?” This question was answered by simulating cosmic ray protons (the

most common type of cosmic ray primary particle) of a range of energies, incoming angles,

and impact distance from telescope and plotting the resulting Čerenkov light. The plots are

shown in § 5.3.2. We also asked, more quantitatively, what is the expected cosmic ray trigger

rate? Determining the cosmic ray coincidence rate from simulation requires a detailed model

of cosmic ray air showers, the telescope, and camera. We used a program called Corsika to

simulated the cosmic rays and wrote a python code to simulate the AdvCam and all-sky

telescope. The coincidence rate depends on the overall light sensitivity of the telescope and

camera, so an indication of the light sensitivity can be obtained by comparing the observed

rate to the expected rate.

5.3.1 Corsika

Čerenkov photon data was produced using CORSIKA v.7.35[35], a program which

performs detailed Monte Carlo simulations of extensive air showers. Protons, electrons,

gamma rays, and 47 other elementary primary particles may be simulated using options

specifying the primary’s energy, zenith angle, azimuth angle, and starting altitude. The

primary particle is tracked as it interacts with the atomic nuclei in the atmosphere and

creates new particles and electromagnetic radiation. Multiple models are available for the

high energy hadronic interactions, three options exist for lower energy hadronic interactions,

and there are two different electromagnetic interaction models. The interaction models have

been validated by many high energy experimental groups. Corsika is also used by gamma

ray astronomy collaborators to design and understand their imaging atmospheric Čerenkov

telescopes.
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In the following simulations, Corsika was compiled with the default quark-gluon string

model (QGSJET01) for high energy primary interactions and the GHEISHA routines for

low energies (<80GeV). Electron and photon interactions are handled by the EGS4 code.

The CERENKOV option was selected to compel generation of Čerenkov light, as well as the

CERWLEN option for wavelength dependent Čerenkov light and refraction in the atmosphere.

To account for atmospheric absorption, mirror reflectivity, and detector quantum efficiency,

the CEFFIC option was invoked. Finally, the THIN option was specified to reduce simulation

times.

5.3.2 Telescope Perspective

The Čerenkov image created by cosmic rays varies depending upon the energy of the

cosmic ray primary particle, incoming angle, and the distance away from the telescope from

which the air shower core impacts the ground (called the impact parameter). Figure 5.20

shows the Čerenkov images of a 500 TeV proton arriving at the telescope with various impact

parameters. As the impact parameter increases, the Čerenkov image goes from circular to

an elongated streak. A change in incident angle causes a simple translational shift in the

image. A more energetic primary results in a brighter Čerenkov image roughly proportional

to the primary energy.
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5.3.3 Energy Threshold

Compared to imaging atmospheric Čerenkov telescopes (IACTs), the Advanced All-sky

Telescope is much less sensitive to cosmic ray and gamma rays. All-sky has a smaller collector

area, 1 m compared to 10-20 m, so photon collection is down by at least a factor of 100.

The smaller collector area is not advantageous, of course, because signal photon collection is

reduced by the same amount as Čerenkov “noise” photons. However, the solid angle of the

all-sky photomultiplier tube pixels are a quarter the size of the most advanced atmospheric

Čerenkov telescopes. This spreads the light from the Čerenkov image, reducing the number

of Čerenkov photons each pixel receives. An interstellar laser pulse would have an angular

extent limited only by the point spread function of the telescope. The point spread function

of the all-sky telescope is ∼2 arcmin, roughly equal to the pixel size of the PMTs. IACTs

are generally located at a high elevation. This helps to reduce atmospheric absorption of the

Čerenkov light and limits the amount of sky background light. The all-sky system is located

at a relatively low elevation, about 100 m. Simulations of the Whipple 10 m atmospheric

Čerenkov telescope put its cosmic ray threshold in the low hundreds of GeV1. [16] As a point

of comparison, the equivalent energy threshold for Advanced All-sky is ∼50–250 TeV as is

explained below.

To determine the cosmic ray energy threshold of the all-sky system using the AdvCam,

a Monte Carlo simulation was performed with Corsika and a custom python code that

simulates the AdvCam. The Corsika simulations provide the python code with the position

and incoming angle of Čerenkov photons from the simulated extensive air shower. For each

simulated air shower, ten telescope positions are randomly chosen within a 200 m×200 m

area. The python code traces the Čerenkov photons through the telescope optics, entrance

window, and beamsplitter and determines if the signal from the photons that land on paired

photomultiplier pixel will exceed the trigger threshold. The photon loss of the telescope

mirrors and photomultipliers is taken into account by Corsika through the use of data files

which specify the mirror reflectivity and photomultiplier quantum efficiency in 5 nm steps

from 180 nm to 700 nm. The Corsika simulation code also accounts for the scattering

1The energy threshold of IACTs is defined as the energy at which the differential gamma ray event rate
peaks for a source with a power law spectrum with an index of α ≈ 1.6.
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and absorption of the Čerenkov photons in the atmosphere. A US standard atmosphere

was specified for all the simulations performed here. Due to processing power and time

constraints, only cosmic ray protons were simulated as primary particles. Also to reduce

computation time, the optical thinning option was enabled, and only six primary energies

were considered: 50 TeV, 75 TeV, 100 TeV, 250 TeV, 500 TeV, and 1000 TeV. For each

energy, 100 proton primaries were simulated; with ten telescope positions per air shower,

each energy is sampled 1000 times. We will call each of these samples a “pointing”. The

primary particle is randomly given an incoming angle relative to the telescope between −2◦

and +2◦. The six primary energies were simulated at zenith angles of 0◦, 15◦, 30◦, and 45◦.

For each of the four zenith angles, the fraction of pointings which resulted in a coincidence

trigger of the simulated AdvCam is plotted on the left in Figure 5.21. It is clear that at

higher zenith angles, a smaller fraction of cosmic rays trigger the camera. This is because at

higher zenith angles, the air showers develop farther away from the telescope. This results

in less intense Čerenkov light due to R2 loss and atmospheric absorption. The cosmic ray

trigger fraction is multiplied by the cosmic ray flux density (flux data from Zombeck [64])

to produce the differential trigger rate plot seen on the right of Figure 5.21. The majority of

the AdvCam’s observations have been conducted at declinations between 0◦ and 30◦, which

roughly corresponds to the 45◦ to 15◦ zenith angles of the simulation. As seen in the figure,

for a 45◦ zenith angle, the energy threshold is ∼250 TeV and between 50–100 TeV for a 15◦

zenith angle.
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Figure 5.21: Left: The fraction of simulated extensive air showers that trigger the camera

is plotted for four zenith angles. For proton primaries of energy < 100 TeV arriving within

2◦ of the telescope axis, the camera is rarely triggered by the EAS’s Čerenkov light. The

fraction is greatest (∼18%) for 1000 TeV protons when the telescope is pointed 15◦ from

zenith, but cosmic rays of this energy arrive very rarely. Right: Here, the trigger fraction

plot on the left is multiplied by the cosmic ray flux rate (data from Zombeck [64]) to get the

differential trigger rate.
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5.3.4 Cosmic Ray Trigger Rate

Does the observed cosmic ray trigger rate comport with that of the simulation? We know

from observations that over the course of the 174 hours of observations, at least 18 cosmic ray

coincidences have been recorded. This amounts to a cosmic ray trigger rate of 0.1 hr−1. If we

integrate the plot of the simulated differential trigger rate over the entire range of simulated

energies, we get an integrated trigger rate that we can compare to the observed trigger rate.

For the 45◦ and 30◦ zenith angle the simulated integrated trigger rate is 0.1 and 0.7 hr−1,

respectively. This corresponds fairly well to the observed rate considering the limited number

of energies and pointings that were used in the Monte Carlo simulation. This simulated rate

was calculated under the assumption of a coincidence threshold corresponding to 8 detected

photo-electrons. Working back from this 8 photo-electron threshold and accounting for

parameter values of the mirror efficiency, photomultiplier quantum efficiency, beamsplitter

efficiency, and entrance window loss in the simulation, the AdvCam’s minimum sensitivity

according to the simulation is ∼60 photons·m−2.
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Figure 5.22: The differential trigger rates from Figure 5.21 were integrated over energy to

produce the plot above.
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5.4 Pointing Calibration

A practical application of the astronomy pulse counters is for precise calibration of the

telescope’s position relative to the sky. Before the Advanced All-Sky Camera, readout of

astronomy mode counters of the PulseNet ASIC was too slow to be useful to capture stars

transiting across a PMT. The situation has been corrected in PulseNet-V; pulse counter

readout of all pixels occurs in parallel and count update rates can be adjusted between

0.75 and 10 seconds. Count rates are periodically requested by oseti.py and saved to the

experiment database on Costas but are also pushed to the control room server via UDP port

6099. Any internet connected computer can tunnel the UDP port from the server over an

SSH connection and receive the count updates. A graphical application called astro img

was built in the Processing language to view the count rates. Processing is a java program

hence the astro img application can be run on any computer with a java runtime such as

Windows, Macintosh OS, or Linux. Figure 5.23 shows a screenshot from astro img showing

the star Deneb transiting PMT2. This is not a coincidence triggered image but an image

put together based on the astronomy counter values.

During the initial weeks of observations with the Advanced All-Sky Camera, multiple

transit events were recorded, along with the sidereal time and telescope encoder value (and

index) during the transit events. Table 5.2 lists the stars and corresponding data points used

to determine a regression line for converting encoder values to sky declination, as shown in

Figure 5.24. The sidereal times at which the stars appeared in the first pixel column as they

crossed PMT2 was also recorded. The sidereal time offsets from the stars’ right ascensions

were averaged and converted into a distance using the camera’s plate scale in order to locate

the position of the southern meridian. The offset in right ascension is 1m 29s, i.e. the meridian

is ∼32 mm from the edge of PMT2 in the direction of PMT3. These offsets are diagramed

in Figure 5.25.
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Figure 5.23: Stars can be located using astronomy mode to image the sky by counting single

photo-electron pulses from each PMT pixel. The pulse counts are plotted using Processing,

a graphical programming language. In the image above, Deneb, a bright star (mv = 1.25) in

the constellation Cygnus, is shown crossing PMT2.
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Table 5.2: Five star transits were used to determine the encoder-to-declination regression

line. An additional seven stars were used to locate the southern meridian.

Star RA DEC Encoder Sidereal Time@Edge of PMT2

Vega 18h 37m 23s 38◦48′05′′ 44174 18h 39m 11s

Altair 19h 51m 26s 8◦54′24′′ 17284
Deneb 20h 41m 54s 45◦19′50′′ 50054 20h 44m 03s

α Lacertae 22h 31m 51s 50◦21′11′′ 54592 22h 34m 09s

α Andromeda 00h 09m 05s 29◦09′51′′ 35530 00h 10m 45s

η Pegasi 22h 43m 38s 30◦17′32′′ 22h 45m 23s

o Pegasi 22h 42m 23s 29◦22′43′′ 22h 44m 00s

ε Aquarii 22h 48m 23s −09◦26′41′′ 20h 50m 05h

α Lyrae 18h 37m 23s 38◦48′05′′ 18h 39m 10s

α Pegasi 23h 05m 25s 15◦16′36′′ 23h 07m 00s

γ Pegasi 00h 13m 55s 15◦15′23′′ 00h 15m 35s

δ Andromeda 00h 40m 02s 30◦55′52′′ 00h 41m 33s
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Figure 5.24: Star transit regression line.
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Figure 5.25: The star transits resulted in a calculated offset of 1m 29s in RA between the edge

of PMT2 and the southern meridian. The equation for calculating the declination position

of the midline of PMT2 is shown in the diagram.

5.5 Limits on the Prevalence of Transmitting

Civilizations

Given that the initial observations of the Advanced All-sky Survey did not encounter any

coincidence events that could be attributed to a distant pulsed laser source, what can be

learned from this exercise? Assuming no civilizations were detected, we can place limits

on the density of civilizations in the nearby galaxy who are attempting pulsed optical

communication. Following the analysis of Howard [38], we first develop a model that

estimates the number of stars that are concurrently observed by the all-sky camera during

an observation. In general, the number of stars viewed when looking at the sky depends on

the sky coordinates (right ascension α and declination δ). There are, of course, more stars in

the plane of the galaxy, and extinction will obscure stars along different sightlines. We will

use a model that assumes a volume density of stars ρ∗(r, δ, α, λ) that depends on direction

and range. This attempts to account for extinction and the effect of the photomultiplier’s

spectral sensitivity on the number of stars observed. The total number of stars N∗ integrated
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over the sky area observed is∫∫∫
ρ∗(r, δ, α, λ) cos δ dδ dα dr = N∗(λ). (5.1)

We will use the average model of interstellar absorption fext(r, λ) developed in § 1.2.1 and

the quantum efficiency QE(λ) of the photomultipliers to calculate ρ∗(r, δ, α, λ).

ρ∗(r, δ, α, λ) = ρ0
∗ · fext(r, δ, α, λ) ·QE(λ) (5.2)

At a range of ∼1 kpc, the average interstellar extinction reduces a transmitted light pulse

by 20–70%. We will assume that this is the maximum range of the all-sky system. There are

∼108 stars within this volume, so the stellar density ρ∗ will be normalized so that N∗ = 108

for R = 1 kpc at a wavelength in the middle of the AsCam’s photomultiplier tube sensitivity

band (400 nm). This will allow us to make comparisons with previous, more simplified

analysis that used a directionally uniform stellar density.

The amount of time spent observing the stars within range depends on the drift time.

All-sky is a transit survey, that is, stars drift past the telescope’s field of view at a rate that

depends on the declination. The time for a star to drift through a PMT is the lowest when

observing the celestial equator (δ = 0◦), about 48 seconds. The drift time for observation i

is codified for each sky coordinate by:

Ti(α, δ) =

{
48 sec
cos(δ)

for α and δ in observation i

0 otherwise
(5.3)

For a hypothetical transmitter that sent one pulse every P seconds, the probability of seeing

a pulse in the ith observation pi is just the time spent observing the transmitter’s location

divided by repetition time P . Note that the “min” function is to ensure that the probability

is less than one. So the probability density becomes:

pi(α, δ, P ) = min

(
1,
Ti(α, δ)

P

)
. (5.4)

The probability densities for all observations are combined using the following equation:

p(α, δ, P ) = 1−
∏
i

(
1−min(1,

Ti(α, δ)

P
)

)
. (5.5)
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The product calculates the joint probability density of unsuccessful detections (1 − pi) in

overlapping observations; the complement of the product (1 −
∏

i) is interpreted as the

probability of a successful detection in at least one of the observations. The total number

of successful detections is the detection probability p (per star) times the number of stars

times the fraction of stars f∗ hosting a transmitter with repeat time P , integrated over the

observed sky locations:

Ndetect = f∗(P )

∫∫∫
p(α, δ, P )ρ∗(r, δ, α, λ)dr cos δ dδ dα. (5.6)

Even though in our observations there were no successful detections, this could have been a

result of observing a transmitter’s location, but not during its transmit time. The Poisson

probability of observing k = 0 events is

Pr(k) =
λke−λ

k!

Pr(0) = e−λ
(5.7)

where λ is the expected number of events. So with equal chances of a detection (e−Ndetect =

50%), the fraction of transmitting stars becomes:

f∗(P ) = min

(
1,

ln 2∫∫∫
p(α, δ, P ) ρ∗(r, δ, α, λ) dr cos δ dδ dα

)
(5.8)

where the minimum value of 1 indicates a fraction of stars hosting transmitting civilizations

at 100%. The fraction of stars with transmitting civilizations versus repetition time for

the two all-sky cameras is shown in Figure 5.26. The first generation, ASIC-based all-sky

camera (Gen 1 AsCam), which observed for a total of 7320 hours, is plotted in blue–green

and the second generation, FPGA-based camera (AdvCam, discussed in Chapter 4), which

has observed a seventh of the available sky during 174 hours of observations, is plotted in

pink–purple. In the model, extinction and the photomultiplier tube’s spectral sensitivity is

taken into account, so the limit varies with wavelength. Though the AdvCam has observed

for a fraction of the time the AsCam has observed, the limits it places on stars with

transmitting civilizations is nearly as good at 600 nm and orders of magnitude better at

700 nm and 800 nm. The AsCam limits are much less strict between 600 nm and 800 nm

as its photomultipliers have much reduced sensitivity at these longer wavelengths. For both
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Figure 5.26: The limits placed on the number of stars with transmitting civilizations varies

with wavelength according to our model. The Advanced All-sky Camera has observed for

only 2% of the time that the first generation all-sky camera has observed but exceeded its

between 700–800 nm.
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cameras, the tightest constraint is placed on the number of transmitting civilizations for

transmit repetition times less than the minimum observation time per star. For one pass

over the Northern sky, this is ∼48 seconds. The AsCam observed the Northern sky from

-10◦ to 60◦ nearly four times over the course of seven years, extending this observation time

per star to about 250 seconds. With each pass of the full sky, the limit f(P ) does not

decrease much but is extended out to longer repeat times. According to our model, the all-

sky survey places the limit at ∼10−8 for the fraction of stars in the galaxy with civilizations

operating a transmitter of repeat time < 102 and wavelength between 400 nm and 500 nm.

The Advanced All-sky Camera places this limit at ∼10−7 for transmitters of repeat time less

than ∼1 min and wavelength between 600 nm and 800 nm.

5.6 Recommendations For Future Work

With PulseNet-V and the Advanced All-sky Camera, our all-sky search for pulsed

optical signals from other civilizations has received a well-deserved boost in the quality

of the data it collects, but I hope it is not the end of development for Harvard all-sky

experiments. The knowledge gained from designing and operating the new camera has led

to valuable insights for improvements that could be applied to future instruments. The

progression of all-sky surveys should tend towards larger telescope collecting area and more

photomultiplier tube pixels. Larger collecting areas increases sensitivity by lowering the

number of photons per square meter that are required to detect a distant laser pulse.

The increase in sensitivity allows detection of smaller pulse energies and more distant

transmitters. Additional photomultiplier tube pixels would increase the amount of sky

observed, reducing the time required for a full sky survey and increasing sensitivity to longer

pulse repeat times.

Given that we haven’t detected any optically transmitting civilizations yet, we may be

very distant from our nearest transmitting neighbor. This argues for extending pulsed optical

observations to longer wavelengths to avoid undue extinction in the interstellar medium.

Above 900 nm, absorption by water vaper complicates the atmospheric transmission window.

The J (1.1–1.4 µm), H (1.5–1.8 µm), and K (2.0–2.4 µm) bands still offer low sky brightness

at night and high sky transparency, so ground based infrared observations are possible. The
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limiting factor, presently, is the quality of red and infrared detectors. Photomultiplier tubes

with multi-alkalai photocathodes, as used here, have sensitivities out to 920 nm, however

the quantum efficiency is low (< 1%). In the near-infrared, detectors normally must be

cryogenically cooled to control the dark current. Thermoelectric cooled InP/InGaAs PMTs

exist but the cooling apparatus is bulky and would only be practical for a single-pixel

targeted pulsed optical survey. In time, these complications may be obviated by new detector

technology. Until that time, the visual band should continue to be preferred for future all-

sky pulsed optical surveys. Still, opportunities for searching the infrared spectrum such

as piggy-backed observations on telescopes with existing infrared detectors or data-mining

infrared surveys for CW spectroscopic lines (à la Reines and Marcy [51]) should be exploited

by the broader SETI community if and when those opportunities arise.

One specific opportunity for pulsed optical SETI that has gone unexploited lies in the

field of very high energy (VHE) gamma ray astronomy and the technology that community

has been advancing. Gamma ray astronomy in the range of 30 GeV to 100 TeV uses imaging

air Čerenkov telescopes (IACT) to image the Čerenkov radiation from the electromagnetic

cascade of high energy gamma rays entering the atmosphere. It is a burgeoning field

with large collaborations such as VERITAS, H.E.S.S., MAGIC, CANGAROO III, and the

planned AGIS and CTA. Each collaboration has spent millions of dollars optimizing their own

telescopes and cameras. The modern imaging cameras used on these gamma ray telescopes

generally consist of hundreds to thousands of light detectors (photomultiplier tubes and

avalanche photodiodes), and high-speed electronics to digitize the fast pulses of incoming

photons. The requirements of fast photon detection to capture the Čerenkov flashes of

gamma rays are quite similar to the needs of pulsed optical SETI surveys. For instance,

the VERITAS cameras have pulse waveform-capture abilities by making use a discrete flash

ADC (FADC) for every photomultiplier tube output. A schematic of the VERITAS FADC

system is shown in Figure 5.27. The elements of the VERITAS system are very similar to the

Advanced All-sky Camera. VERITAS uses discrete 500 Msps, 8-bit FADCs, an SRAM for

sample storage, a comparator (constant-fraction discriminator) with adjustable threshold for

triggering, a backplane for routing triggers and clocks, and a VME bus for communication.

The Advanced All-sky Camera has 1.5 Gsps, 3-bit flash ADCs, block RAM for sample

storage, LVDS comparators with adjustable thresholds for triggering, a motherboard for

184



CFD

Analog
In - 1 Gain

Switch
A

D

500 MHz
Flash ADC

8 us
buffer

SRAM Gate
Array

Data
Processing
Gate
Array

CLOCK TRIG

Backplane

Delay

CFD

Analog
In - 10 Gain

Switch
A

D

500 MHz
Flash ADC

8 us
buffer

SRAM Gate
Array

Delay

To L2 Trigger

VME Bus

x10

Figure 5.27: The VERITAS cameras have 500 photomultiplier tubes sampled by the flash

ADC system. Ten channels are located on a single 9U VME board. Each channel includes a

500 Msps ADC that sends samples directly to an SRAM which holds 8 µs of sample storage.

A constant-fraction discriminator with an adjustable threshold and pulse time is used for

triggering the system.

trigger and clock routing, and Ethernet switches for communication. The similarities are so

apparent that it may be beneficial to keep abreast of the developments of the next-generation

VHE gamma ray telescopes to see if their waveform-capture electronics could be directly used

in a pulsed optical SETI survey. A novel addition to the VERITAS system is the autoranging

gain switch in front of the FADC. The analog switch normally connects a high-gain amplifier

to the FADC. If a strong pulse saturates the high-gain amplifier, the switch connects a

delayed, low-gain amplifier to the FADC momentarily. The lower gain pulse follows the

truncated, saturated pulse. This extends the dynamic-range of the system from 256 to 1500.

This might not be necessary or useful for a pulsed optical SETI system, but it is an example

of the kinds of innovations that VHE gamma ray astronomy has produced.
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Figure 5.28: H.E.S.S. and MAGIC telescopes use an analog memory based digitization and

readout system. The analog memory samples at high-speed (1 Gsps) but is stopped by the

trigger system. A slow (40MHz) ADC can then sample the pulse from the analog memory

at high resolution (12-bit).

The MAGIC II telescope uses a different readout topology than VERITA but also

potentially illuminating [60]. It is an analog memory based system. Instead of a high-

speed ADC at the front-end of a readout chain, the MAGIC II sends analog signals from its

detectors to an analog memory called the Domino Ring Sampler (DRS). The DRS version 4

can sample nine channels at up to 6 GHz (950 MHz bandwidth) and provides 1024 samples

for each channel. When triggered, the DRS stops sampling and an external 40 MHz, 12-bit

ADC transfers the digital samples one by one to SRAM storage through an FPGA. This

topology lowers the power requirements and increases the sample resolution by using a low

speed ADC to do the digital conversion only after the system has triggered (which should

be less than 100% duty cycle). The front-end DRS has a high input bandwidth and is much

less expensive than ADCs at an equivalent sample speed. The DRS4 costs ∼$1 per channel

while a 1 Gsps ADC currently cost ∼$400 per channel. While the 1024 samples per channel

is smaller than the 8192 samples per channel for the Advanced All-sky Camera, the DRS4

has the ability to cascade its eight channels in series for 8192 samples. The chip specs 69 dB

of signal-to-noise, which translates to 12-bit resolution, much better than the 3-bits achieved

with Advanced All-sky. This front-end topology should be considered for pulsed optical

SETI.
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The telescope designs could also be employed in pulsed optical SETI. The imaging air

Čerenkov technique necessitates very large collector areas combined with a large field-of-

view. The H.E.S.S. II, for example, is a parabolic shaped reflector with 875 90 cm hexagonal

mirrors for a total mirror area of 614 m2. Its camera has a 3.2◦ field-of-view comprised of 2048

pixels each subtending 4 arcminutes. This pixel size is about twice that of the Advanced All-

sky Camera. Even for a telescope as massive as H.E.S.S. II, the point spread function is well

controlled to less than one pixel for the area within 1.6◦ of the axis [18]. Earlier generation

IACTs are of a more managable size; the 12 m H.E.S.S (I) telescopes are a spherical design

(Davies-Cotton) with 382 round mirrors, 108 m2 total collecting area, 960 detectors, and a

10 arcminute pixel size. Large engineering efforts went into these telescopes. The designs

are well tested and rugged. With small modifications, such as employing a camera with

a smaller pixel size, these telescope designs could be employed in high sensitivity pulsed

optical SETI surveys. Collaborators planning future VHE gamma ray telescope arrays, such

as the Čerenkov Telescope Array (CTA), are considering building large numbers of telescopes

with mirror areas of a few m2 to cover multi-km2 areas for the detection of gamma rays at

energies above 10 TeV [2]. Though small compared to other IACTs, these yet-to-be-designed

telescopes will have collecting areas much larger than Harvard’s all-sky telescope. Though

the telescopes’ implementation details are yet to be determined, as has been already noted,

the important telescope parameters like the field-of-view and PSF of IACTs are generally

compatible with the needs for wide-field pulsed optical SETI surveys. Since there will be

many of them, the unit cost for the CTA’s smaller telescopes may be low enough to considered

by the value-minded SETI community.

Building a new, large collecting area, IACT-style telescope to increase the sensitivity

of pulsed optical SETI surveys might require a budget that is not feasible given that the

entire cost of the Harvard all-sky effort has been <$1 million over a period of 13 years. A

dedicated telescope is certainly desirable, however if this is not possible, existing gamma ray

telescopes could be retrofitted with a pulsed optical SETI trigger system. In fact, an IAC

telescope can very nearly be used in a pulsed optical search with only a few modifications.

Holder et al. [36] describes using the Whipple 10 m telescope to search for optical pulses

using the image shape as a discriminator. A dedicated SETI trigger system, however, could

provide much more reliable optical pulse detection for IACT arrays. Most of the modern
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VHE gamma ray systems (H.E.S.S., MAGIC, VERITAS) have trigger pathways that are

somewhat independent of the data acquisition and readout electronics. Because of this

modularity, additional trigger systems can added without affecting the primary gamma ray

trigger pathway. A SETI trigger system could consist of coincidence circuits for individual

pixels or pixel regions in different telescopes of the array that view identical areas of the

sky, similar to the matched pairs of the all-sky camera. Two or more array telescopes could

be used in the coincidence circuit, as long as the telescopes are pointed at the same sky

coordinate. Gamma ray telescopes must be used in pairs or more to function as reliable

pulsed optical SETI detectors. The point spread functions of gamma ray telescopes are

normally equal to or smaller than their camera’s pixel size, so an optical point source tends

to be focused into only a single detector. This is a problem because photomultiplier tubes

have sources of dark current that cause large-amplitude output pulses to occur frequently.

A lone gamma ray telescope has no way to distinguish the dark current pulses from optical

point sources. In order to capture actual flashes of light and not be triggered by dark current

pulses, gamma ray telescope trigger systems enforce a coincidence of adjacent clusters of

photomultiplier tubes. This type of trigger works when the light from an optical pulse

covers a broad area of the camera, as is the case for the Čerenkov light of cosmic ray and

gamma ray extensive air showers, but it will not work in the case of an optical point source

in which the light is only collected by one or two pixels.

The direction of VHE gamma ray astronomy is tending toward using tens of telescopes of

2 or 3 different sizes to maximize sensitivity to a wide range of gamma ray energies: less than

100 GeV, between 100 GeV to 10 TeV, and above 10 TeV. Having many telescopes allows

them to be used in groups to observe adjacent and overlapping fields in the sky. In the future,

this type of capability will enable, for the first time, full-sky surveys at full sensitivity [2].

Implementing a pulsed optical SETI trigger subsystem for the next-generation of IACTs

makes a lot of sense given that future VHE gamma ray observations will finally cover large

areas of the sky rather than being limited to the galactic plane and a small number of other

point locations. With so much overlap between pulsed optical SETI and VHE gamma ray

astronomy camera topologies, the Advanced All-sky Camera (AdvCam) may even provide

an example to the next generation imaging air Čerenkov telescopes (IACT). The trigger

system used in the AdvCam is integrated into the logic-fabric of an FPGA and works by
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Figure 5.29: An optical SETI trigger could be constructed for imaging air Čerenkov

telescopes that responds to coincidences from matched sky pixels from separate telescopes.
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processing the digital sampled versions of the analog photomultiplier tube signals. Current

FADC-based trigger systems of IACTs, such as used on VERITAS (Figure 5.27) are separate

from the FADC data aquisition electronics, adding significant complexity to the electronics

design. The integrated AdvCam trigger system has not been used before in any IACT but

the increasing power of integrated circuits “may soon make digital trigger processors an

attractive and feasible option” [2]. Advanced All-sky has a working implementation of this

approach and offers a proof of concept (albeit simplified) design example.

The Advanced All-sky Camera has allowed us to probe the nearby galaxy for pulsed laser

transmitters and explore its limits as a configurable nanosecond optical astronomical camera.

The all-sky telescope and camera have their limitations, however, so to substantially lower

the limits on the prevalence of transmitting civilizations (see Figure 5.26) and perhaps to

make a detection, a new all-sky survey may need to be designed. Here is a proposal for

a system that could provide a modest boost in capability over the current Harvard all-sky

survey.

The proposed system is comprised of two telescopes, each with a camera similar to

the Advanced All-sky Camera design. Coincidence timestamps and pixel locations from

the individual cameras would be forwarded to a higher level trigger unit that would send

an array trigger to the two telescopes. The telescopes should be separated by enough

distance to avoid being triggered by the same cosmic ray air showers but close enough

so that the detector readout electronics can buffer more time than the signal propagation

delay between telescopes. Very high-energy cosmic rays can create a Čerenkov ground

pattern over more than a square kilometer, so a baseline of 1000 m would give a reasonable

propagation delay of ∼5 µs. The Advanced All-sky Camera can already buffer 10 µs at a

sampling rate of 800 Msps, a number which will only rise if subsequent versions use the

latest FPGA silicon devices. The camera detectors should use individual photomultiplier

tubes with extended-red sensitivity and infrared sensitivity if available. Most important for

the detectors is to have a very low large-amplitude dark current pulse rate. This is the

most difficult background noise source to reduce. Considering other detector technologies,

geiger-mode avalanche photodiodes (GAPDs) in multi-pixelated packages with large fill

factors and low output capacitance are becoming available; they should be considered as

an alternative photodetector as they have the advantages of higher quantum efficiency,
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mechanical robustness, little aging even when exposed to bright light, and low voltage

operation. They can be especially effective when used with optimal Winston light cone

concentrators [9]. While multi-pixelated phototubes may be more economical, the gain

between pixels cannot be equalized and individual anodes may receive too much light from

a star, requiring a reduction in the tubes’ high voltage, reducing the gain for all pixels in

the tube.

The two telescopes could be based on one of the IACT-type designs (Davies-Cotton,

segmented parabolic, or Schwarzchild-Couder), but with an increased focal length to reduce

the plate scale so that pixels subtend <2 arminutes. This dilutes Čerenkov images and

decrease triggers from cosmic ray showers and local muons. The Davies-Cotton (DC) type

would be an appropriate choice as they are well documented and widely used. They are

composed of many segmented spherical mirrors that make up a single spherical main reflector.

The camera is situated at the prime focus in front of the main mirror. Since DC telescopes

have no secondary mirror, there is little shadowing of the primary. Alignment is easily

accomplished by adjusting the mirror facets. Winston cones can be used to block off-axis

background light from entering the detectors, an advantage in areas with skyglow from nearby

cities (as is the case in Harvard, MA). Davies-Cotton designs do introduce a time arrival

distribution for an instantaneous parallel beam flash. An ideal 4 m f/15 Davies-Cotton

reflector has a time spread of ∼1.1 ns which is adequate for the coincidence overlap (2.5 ns)

normally used by the AdvCam. The time spread is mainly dominated by the innermost

mirrors. The time spread can be reduced for larger diameters by moving the inner mirrors

closer to a parabolic shape [9].

The system should ideally be located in an area with very dark skies to reduce the

random coincidence rate and maximize photomultiplier life. The most numerous type of

camera coincidences are from pixel pairs that both cross the trigger threshold at the same

time, caused mainly by pileup of multiple night sky photons and starlight, but also from

ion feedback, after pulsing, or other detector systematic noise source2. Experience with

the AdvCam has shown that even when using matched detector pairs in coincidence, an

2Cosmic ray induced Čerenkov light and airplanes do trigger the camera, but these triggers are easily
recognizable by their angular size and waveform shape.
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extra few orders of magnitude of suppression of coincidences are still needed to lower this

“accidental” rate. The accidental rate could be lowered by adding a third bank of detectors

and requiring a triple coincidence to trigger the camera. The disadvantage of this approach

is that the light collected by the telescope would be further divided to the third bank of

detectors, reducing the signal that arrives at the original two detectors. Introduction of a

second telescope requires duplication of the camera electronics and photodetectors, but the

coincidence rate r is reduced by

rc = r2τtcw (5.9)

where τtcw is the coincidence window time for the coincidences between the two telescopes. If

τtcw is just limited to the GPS time resolution (10µs) and the individual camera coincidence

rate r = 10−2, then two telescope coincidences would randomly occur on average three times

in a century.
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