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Abstract

The Harvard-Smithsonian optical SETI project is a search for intentional transmis-
sions from intelligent extraterrestrial civilizations. A plausible scenario for these
transmissions is developed which concludes that they could consist of very short
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K type dwarves) nearby in our galaxy. A group at Princeton with whom we are
collaborating has started simultaneously observing the same stars; this has reduced
the number of background events to zero. 8,206 stars have been observed at Har-
vard and 1,088 at Princeton; so far no events been seen which present the assumed
characteristics of an extraterrestrial intelligent origin.
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Chapter 1

Hypothesis

1.1 Background

Historically, Seti experiments have focussed on the microwave part of the electro-

magnetic spectrum. This is no doubt due in large part to the influence of the original

paper by Cocconi and Morrison [5] proposing a search for interstellar communications

in the microwave region of the electromagnetic spectrum. Their suggestion for the

optimum channel was based largely on considerations of signal attenuation in plan-

etary atmospheres, and on technological limitations of the time (1959). The optical

and near-infrared regimes are dismissed without much discussion: “The bandwidths

which seem physically possible in the near-visible or gamma-ray domains demand

either very great power at the source or very complicated techniques. The wide

radio-band from, say, 1 Mc. to 104 Mc./s, remains as the rational choice.”

Little did the authors know that the “complicated techniques” required for com-

munication at optical and near-infrared wavelengths would be perfected here on Earth

as little as two years after the publication of their paper, when in 1960 Arthur L.

Schawlow and Charles H. Townes were awarded a patent for the invention of the

laser. A working ruby laser operating at 690 nm was demonstrated in the same year.

A year later in 1961, Townes would co-author a paper [18] proposing that exactly

that which Cocconi and Morrison had dismissed so lightly was actually an immi-

nently practical means of interstellar communication. In the years that followed, the
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revolution in terrestrial communications that ensued as a result of the invention of

the laser added weight to their words: visible wavelengths were discovered to be an

excellent medium for transmitting information.

1.2 Optical communication

Communication techniques at visible wavelengths differ qualitatively from those used

at microwave wavelengths. One of the most obvious differences is that there is very

little transmission of signals at visible wavelengths “on the air”; rather, the signals

are piped around in optical fibers. There are a number of reasons for this. First,

signals at visible wavelengths do not have the penetration properties of radio signals

(e.g. they don’t go through walls). Furthermore, signals at visible wavelengths can be

significantly degraded by the earth’s atmosphere, in particular when passing through

turbulent regions or weather. Finally, there is a great deal of background light at

visible wavelengths which can interfere with the signal you are trying to transmit.

Naturally, the first two of these concerns do not affect signals traversing interstellar

space, where there are no walls and no atmosphere. However, background light, in

particular that which emanates from the star that the transmitting civilization is

orbiting, will remain a concern for interstellar communication. Ignoring absorption

lines, the Sun’s spectrum can be approximated by a thermal blackbody at 5800◦K,

which reaches its maximum at visible wavelengths (one could argue that this is why

evolution made these wavelengths visible). In order to communicate at wavelengths

in the visible, the transmitting civilization must find a way to outshine their star, and

the receiving civilization must find a way to distinguish starlight from signal.

The total power output from the Sun is about 4 × 1026 Watts, isotropicallly dis-

tributed, with most of this output in the visible part of the spectrum. The entire

present power consumption of the human race is only about 1013 Watts [12]. If the

transmitting civilization has access to similar resources then clearly they will not be

able to outshine their star continuously in all directions. But one fact is immediately

obvious: that for a fixed total energy the signal can be made arbitrarily brighter by
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Name Nova NIF Mercury Helios Nike Sombrero
Date 1997 (2004) 1999 (2015) 1997 (2015)
Type SSL SSL SSL SSL Gas Gas
Gain medium Nd:glass Nd:glass Yb:S-FAP Yb:S-FAP KrF KrF
Pump Lamp Lamp Diode Diode E-beam E-beam
Pulse energy ∼ 0.1 MJ ∼ 2 MJ 0.1 kJ ∼ 2 MJ ∼ 2 kJ ∼ 2 MJ
Pulse duration ∼ nsec ∼ nsec ∼ nsec ∼ nsec ∼ nsec ∼ nsec
Pulse rep rate 0.001 Hz 0.001 Hz 10 Hz 10 Hz 0.01 Hz 10 Hz
Wavelength 353 nm 353 nm 1047 nm 347 nm 248 nm 248 nm
Efficiency 0.1% 0.5% 10% 10% ∼1.5% ∼7%

Table 1.1: Properties of state-of-the-art high power lasers currently or soon to be
available on Earth. Taken from [14]

making the duration shorter.

Just how short and bright could the pulse be? As is commonplace in Seti research,

we look for examples on Earth at the risk of anthropomorphizing the transmitting

civilization. Research into laser fusion has led to the development of incredibly pow-

erful carbon dioxide lasers such as Helios [4] capable of delivering a 10 kJ, 0.5 ns

pulse at 10.6 µm, or 2 × 1013 watts. The “National Ignition Facility” at Lawrence

Livermore National Laboratory was set up by the Department of Energy with the

goal of producing intense pressures and temperatures for simulating the conditions of

a thermonuclear explosion [17]. The goal of the NIF is to produce a neodymium-glass

laser (called “Nova”) capable of producing 3–4 MJ in a 10 ns pulse, or about 3.5×1014

watts. These lasers and some others are listed in Table 1.2 which was taken from

[14], and which shows the current state of the art in terrestrial lasers, as well as some

projections into the near future.

It seems reasonable from the values in Table 1.2 to adopt as our model transmitter

a laser capable of producing a 1 MJ pulse of 1 ns duration at 1 µm wavelength and

of repeating this performance at 10 Hz. This implies a peak power output of 1015

watts, which is still eleven to twelve orders of magnitude short of outshining the sun.

The rest will have to come from reciprocal bandwidth and directivity.
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1.3 Directivity

Directivity is achieved by using a telescope. The illumination pattern for a circular

aperture (such as a parabolic reflector uniformly illuminated by a plane wave) is the

familiar Fraunhofer diffraction pattern

I(θ) = 4

[
J1 [(πD/λ) sin θ]

(πD/λ) sin θ

]2

(1.1)

where D is the mirror diameter, λ is the wavelength, θ is the angle to the axis of the

parabola, and I(θ) is normalized so that I(0) = 1. The half-power beam width can

be found by solving

4

[
J1(x)

x

]2

=
1

2
(1.2)

which has solution x ≈ 1.6134. The full width at half maximum is just 2 × x

πD

λ
sin θ = 3.2268 → sin θ = 3.2268 × λ

πD
→ θ ≈ λ

D
(1.3)

giving a beam solid angle of

Ω = π

(
θ

2

)2

=
π

4

λ2

D2
(1.4)

The gain of a 100% efficient antenna is the ratio of the solid angle of an isotropic

radiator to the solid angle of the antenna beam[13]

G =
4π

Ω
= 16

D2

λ2
(1.5)

For a telescope such as the Keck, with a diameter of 10 meters working at a

wavelength of 1µm, θ ≈ 10−7, which gives a beam solid angle of Ω = π
4
× 10−14

steradians or about 10−2 square arcseconds and a gain of

G = 16 × 1014 = 152 dB (1.6)
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Positions 0.77/0.64 mas (RA/dec)
Proper motions 0.88/0.74 mas/yr (RA/dec)
Parallaxes 0.97 mas

Table 1.2: Hipparcos median precisions

Now we can multiply the power output of our laser (1015 Watts) by the gain (16×1014)

and compare the result (16 × 1029 Watts EIRP1) to the output of the Sun, (4 × 1026

Watts) and discover that we have outshone our star by a factor of 4000 (36 dB).

Note that, in this analysis, we have not made any assumptions about the band-

width of the receiver. In other words, the hypothetical transmitting apparatus out-

shines the star even if the receiver admits flux at all wavelengths. At visible wave-

lengths, the directivity that is achievable with large telescopes is so great that it is

not necessary for the receiver to be wavelength specific.

1.4 Astrometry and Pointing

The use of a high-gain antenna puts a substantial burden on the transmitting civi-

lization. Using a beam with an angular width of 10−7 radians means it is essential to

know exactly where your target is in order to hit it.

Once again, we must use the best practice available here on Earth to estimate how

well the other party could measure the positions of other stars such as our own. The

best astrometric catalog produced so far on Earth is the Hipparcos Catalog [2], and

the relevant precisions are shown in Table 1.2. Our requirement of a pointing precision

of 10−7 radians (the width of the beam) translates to 20 mas (milli-arcseconds), and

as can be seen from the table, the Hipparcos catalog gives positions that are much

better than this.

However, the requirement is more demanding than just knowing the apparent

positions of stars to high precision since the the stars in our galaxy are in motion

with respect to each other. The apparent position of a star 100 light-years away

1“Equivalent Istropic Radiated Power”
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is where it was 100 years ago, not where it will be 100 years hence when a signal

arrives. The secular change in the angular position of the star on the celestial sphere

is called the “proper motion” and is tabulated in star catalogs. Proper motions are

difficult to measure to high accuracy since they can only be derived after many years

of high precision observations of the positions of stars. As can be seen from Table

1.2, the ∼ 0.75 mas error in proper motion accumulates to an error of the same size of

the beam (20 mas) after about 25 years, so targets farther than 25 light-years away

cannot be hit with the required accuracy.

Furthermore, knowing the positions and proper motions to high accuracy is still

not enough. At a distance of 100 light-years (1018 meters), a beam with an angular

width of 10−7 radians has only spread to cover an area with a diameter of 1011 meters,

or about 1 AU (the distance from the Earth to the Sun). A typical value for the proper

motion of a star at a distance of 100 ly (= 31 pc) is .25 as/yr, which corresponds to a

velocity of about 7.75 AU/yr (= 31 pc× .25 as/yr) perpendicular to the line of sight.

Therefore, at a distance of 100 light-years, a target star can be expected to spend no

more than 1/7.75 = 0.13 yr or about a month and a half in a beam that is pointed in a

fixed direction with respect to the transmitting civilization’s star. Since the starlight

took 100 years to get from target to transmitter and the signal will take 100 years

to get from transmitter to target, this means that the distance to the star must be

known to a precision of about 0.065%.

Once again, Table 1.2 shows that on Earth the parallaxes of stars are only known

to about 1 mas. Distances are derived from parallaxes as follows

R (pc) =
1 (AU)

p (as)
(1.7)

where R is the distance to the star in parsecs and p is the measured parallax in

arcseconds. Therefore the error in the distance measurement is related to the error

in the parallax measurement by

∆R =
1

p2
∆p → ∆R

R
=

∆p

p
≤ 0.00065 (1.8)
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Referring again to Table 1.2, we see that ∆p ≈ 10−3 means that p ≈ 1.55 as or

R ≈ 0.65 pc, or 2.1 light-years.

The uncertainties in position, proper motion and parallax can be combined as

follows. Suppose φ is the apparent position of the target star now, µ is its proper

motion (in arcseconds/year) and p is its parallax (in arcseconds). Then the distance

to the star is 1/p (in parsecs) and the time the star light took to travel from the

star to the observer is 1/pc (in years if c is measured in parsec/yr, i.e. c = 1/3.26).

Therefore µ/pc is how far the star moved while its light was in transit so µ/pc must

be added to the apparent position of the star to calculate where it is now and another

µ/pc to calculate where it will be when the signal arrives. Therefore the transmitting

telescope must be pointed at the position

φ +
2µ

cp
(1.9)

for the signal to reach the star, where µ/cp has units of arcseconds. Standard error

propagation methods give the pointing uncertainty σ in terms of the errors in φ, µ

and p as

σ2 = (∆φ)2 +

(
2µ

cp

)2


(

∆µ

µ

)2

+

(
∆p

p

)2

 (1.10)

In equation 1.10, there are three terms which sum in quadrature due to uncer-

tainties in position, proper motion and parallax respectively. We can calculate the

relative importance of each of these terms as follows. Since the proper motion is a

change in angular position, µ ∝ 1/R, where R is the distance to the star. For a

star at a distance of 100 light years (R = 31 pc) the average proper motion µ = .250

arcseconds per year, so in general µ = 7.75/R. Using p = 1/R this gives

2µ

cp
≈ 50 as (1.11)

Substituting this and ∆φ = ∆µ = ∆p ≈ 1 mas (from Table 1.2) into equation 1.10

gives

σ2 = (10−3)2

[
1 + (50)2

[(
R

7.75

)2

+
(

R

1

)2
]]

(1.12)
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The expression in square brackets above contains the three terms due to the uncer-

tainties in position, proper motion and parallax, respectively. As expected, the term

due to the uncertainty in parallax is the largest in the error. Furthermore, the terms

due to uncertainties in proper motion and parallax grow proportional to the distance

between transmitter and receiver; this effectively sets the transmitter’s range. Taking

into account all of the error terms and using the best astrometry currently available

on Earth gives a transmitter range of ∼ 0.35 parsecs or 1.15 light years. The closest

star to our Sun, Alpha Centauri, is at a distance of 4.3 light years.

However, astrometry is not a static field here on Earth, and advances made during

the next ten to twenty years could significantly increase our transmitting range. For

example, the astrometric sub-array at the Navy Prototype Optical Interferometer in

Flagstaff, Arizona is designed to produce star positions accurate to a few milliarcsec-

onds with a limiting magnitude of 10 [11]. This does not improve significantly on the

Hipparcos accuracy, but since the NPOI is ground-based it can make observations over

a much longer period of time than the Hipparcos satellite could, which significantly

improves measurements of the proper motions of stars. A quantum leap in astromet-

ric precision is expected after the launch of NASA’s Space Interferometry Mission

(SIM) which has a design goal of making astrometric measurements with a precision

of 4 microarcseconds [16]. This has the potential to improve the proper motion and

parallax measurements, and therefore the transmission range, proportionally, i.e. by

about three orders of magnitude.

Knowing where to point is not enough, however; you must also be able to build a

telescope with the required mechanical pointing precision. The typical pointing qual-

ity of a modern major astronomical telescope (such as the MMT on Mount Hopkins

in Arizona) is 1.5 arcseconds, or about 7.5× 10−6 radians. The pointing requirement

of 10−7 radians is therefore about 75 times better than typical terrestrial practice.

Nonetheless, it is reasonable to believe that an improvement in pointing accuracy

of two orders of magnitude is within the reach of a determined engineer. Improve-

ments in pointing beyond the “seeing disk” of about 0.25 arcseconds (at very good

astronomical sites) are expensive and difficult to justify if the objective is to observe
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but not to transmit. Therefore, there is reason to believe that modern astronomical

telescopes do not point as well as they could, but only as well as they have to.

Interstellar communication at optical wavelengths is not something that human

civilization is capable of at this point in our history. Interestingly, the limitation is

not the power of the lasers or the diameters of the telescopes we can construct, but

rather our limited knowledge of positions, distances and proper motions of the stars

in our neighborhood. Improvements in the measurements of these quantities over the

next ten to twenty years are expected to lift this limitation.

1.5 Adaptive Aperture

So far the working model for the transmitter’s strategy has assumed that the objective

is to outshine the star by a fixed ratio. This is not necessarily the optimal transmission

strategy. The hypothetical laser capable of delivering 1 MJ in 1 ns through diffraction

limited beam from a 10 meter aperture results in a signal-to-noise ratio of 36 dB that

is far higher than is typical in communications.

Suppose instead that the pulse energy and the beam size on target are held fixed.

The angular size of the beam is θ = λ/D where D is the diameter of the transmitter’s

aperture which will be adjusted for a constant beam size on the target. The beam

size on target is simply

k = R
λ

D
(1.13)

where R is the range to the target. To hold k fixed the transmitter simply adjusts D

so that D = λR/k.

In this case, instead of having a constant signal-to-noise ratio at every target, the

photon fluence is fixed instead. The total number of photons in a 1 µm, 1 MJ, 1 ns

pulse is

Np =
Eλ

hc
=

1

hc
= 5 × 1024 (1.14)

If the size of the beam at the target is held fixed at 10 AU (a radius much larger than

9



the habitable zone in our solar system) then the photon fluence is given by

5 × 1024

1.7 × 1024
≈ 3 m−2 (1.15)

within 1 ns. For a signal to noise ratio of at least one, the number of laser photons

must be equal to or greater than the number of stellar photons. This sets a minimum

distance between transmitter and receiver. The receiver must be far enough away from

the transmitter’s star so that the stellar photon flux has fallen below 3× 109 s−1m−2.

The photon flux from the Sun on the Earth is about 1020 s−1m−2 at a distance of 1

AU, and it falls off proportional to 1/R2 with increasing distance. The flux from the

Sun is down to the required level at a distance of about 3 × 105 AU ≈ 1 pc, which is

less than the distance to the closest star from the Sun (Alpha Centauri at 1.3 pc).

Therefore this minimum distance would not be a limitation in practice.

Using this technique, the angular size of the beam is not fixed, but varies with

the range to the target as

θ =
λ

D
=

k

R
. (1.16)

It is still a requirement that the angular size of the beam, θ, must be larger than the

typical astrometric error σ in order for the transmitter to hit the target. However,

with an adaptive aperture both the beam size and the astrometric error vary with

range R in such a way that the range is greatly extended.

To see how this works, recall that the pointing requirement is that the angular

size of the beam must be greater than the astrometric error

θ =
k

R
≥ σ (1.17)

If k is measured in AU and R in parsecs then σ has units of arcseconds. At large

distances, the uncertainties in proper motion and parallax dominate σ and it grows

∝ R (see Equation 1.10). Let ε be the “fundamental angular measurement error”,

for example 10−3 arcseconds for the Hipparcos data (see Table 1.2). Then at large R
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Equation 1.10 can be approximated by

σ ≈ (56R)ε (1.18)

and we have
k

R
≥ σ ⇒ k

56R2
≥ ε ⇒ R ≤

√
k

56ε
(1.19)

To get some idea of the scale of R, we can plug in k = 10 AU and ε = 1 mas and find

R ≤ 13.4 pc = 44 ly (1.20)

This is a substantial improvement in range over the values derived in the previous

section (0.35 parsec = 1.15 light years) assuming a fixed angular beam size. Clearly,

the adaptive aperture is favored if range is the figure of merit for a transmission

strategy. Since the number of potential communicators grows as the range cubed,

there is every reason to believe that this is the case.

The range of either strategy can be increased to an arbitrarily large amount if

the transmitter chooses to sweep the beacon over the range of angles bounded by the

pointing uncertainty. The penalty for using this approach is an increase in the amount

of time required to reach all targets within a certain distance. The number of potential

targets at a given distance R is proportional to R2 and the pointing uncertainty is

proportional to R. The area that the telescope must cover is proportional to the

pointing uncertainty squared. Therefore, the time required for the transmitter to

illuminate all the targets at a distance R is proportional to R4, and the time required

to illuminate all targets within a distance R grows as R5. Therefore, this technique

does not seem like a practical method coping with large astrometric error if the

transmitter’s goal is to reach a large number of stars, and it is seen that astrometric

errors still set the outer limit on communication range.
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Table 1.3: Extinction in the Johnson-Cousins Photometric Bands

Band λ A(λ) T (λ)

U 0.365 1.560 0.238
B 0.440 1.310 0.299
V 0.550 1.000 0.398
R 0.700 0.749 0.502
I 0.900 0.479 0.643
J 1.250 0.282 0.771
H 1.650 0.176 0.850
K 2.200 0.108 0.905

1.6 Extinction and scattering: Interstellar Dust

Studies of pulsars have shown that radio pulses will be broadened as they traverse

interstellar space due to fluctuations in the plasma electron density in the interstellar

medium [7]. Visible and infrared radiation are essentially immune to these effects;

however, shorter wavelengths will be affected by scattering and absorption by inter-

stellar grains. These grains are mostly carbon and silicate dust particles a fraction

of a micron in size which will scatter and absorb light of commensurate wavelengths.

The density of dust in the galaxy is not uniform, and the resulting scattering and ab-

sorption depends a great deal on the galactic latitude and longitude of the source[1];

in what follows, typical values are used.

Considering first just the absorption, the fraction of radiated power remaining

after one kiloparsec can be expressed as

T (λ) = 10−
2
5
×A(λ) (1.21)

where A(λ) is the extinction in magnitudes at wavelength λ (in µm) and A(0.550) =

1.0.[1] [15] [6]. Table 1.3 shows data taken from [3]; these data are plotted in Figure

1.1. As can be seen from both table 1.3 and figure 1.1, the transparency of the

interstellar medium increases with increasing wavelength. This trend continues until

the galaxy becomes essentially transparent at 10 µm.

Visible light is also scattered by interstellar grains. For wavelengths between

12



Figure 1.1: Transmission vs wavelength: showing the fraction of light remaining after
traversing one kiloparsec of interstellar space as a function of wavelength.

0.03 and 1 µm, the effects of scattering on short pulses can be divided into three

components [6]:

1. an unscattered component

2. a forward scattered component due to large grains

3. a diffuse component due to wide-angle scattering

An instrument sensitive to narrow pulses will only detect the unscattered component.

An optical pulse is significantly distorted by any scattering; a scattering diameter of

one arcsecond for a source at ten kiloparsecs would broaden a pulse to over two

seconds [6]. Studies of scattered starlight (either the diffuse galactic light scattered

in the galactic disk or reflection nebulae) have determined that the albedo (ratio of

scattering to absorption cross sections) of the dust is about ∼ 0.5.[1], so scattering is

not a negligible effect compared to absorption.

13



The conclusion is that optical pulses may only be detectable from sources rel-

atively nearby, say within a kiloparsec. This is probably less restrictive than the

astrometric requirement. Here on Earth, the quality of our astrometry would limit

us to transmitting within a distance of about 13.4 parsecs (see Sections 1.4 and 1.5).

Nonetheless, it would seem more worthwhile to focus search efforts on stars within a

kiloparsec, and this is what we have done.

1.7 Infrared

There are other reasons besides the transparency of the interstellar medium to prefer

the infrared for interstellar communications. For a fixed laser energy E the number

of photons produced goes as

Nlaser =
E

hv
=

Eλ

hc
∝ λ (1.22)

whereas for a Sun-like star (temperature ∼ 103 − 104 ◦K), the infrared wavelengths

are well into the Rayleigh-Jeans part of the blackbody spectrum where the radiated

power within a given bandwidth goes as

P ∝ 1

λ2
(1.23)

and therefore the number of photons from the star goes as

Nstar ∝ 1

λ
(1.24)

and the signal to noise ratio for a fixed laser energy as

Nlaser

Nstar

∝ λ2, (1.25)

pushing the advantage back toward longer wavelengths.

These advantages have to be traded off against the advantages of shorter wave-
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lengths, of course. As has already be shown, the gain of the transmitting antenna goes

∝ 1/λ2, an effect which pushes the advantage back toward shorter wavelengths. At

much longer wavelengths (ν ∼ 1 GHz), the galactic synchrotron radiation produces

considerable background noise, and the dilute plasma of free electrons in the galaxy

creates a dispersive medium which broadens pulses. Therefore the range of wave-

lengths is contrained on the long end as well. Townes has made an argument based

on noise lower bounds enforced by quantum mechanics that the optimal wavelength

depends on the receiver construction, with heterodyne receivers favoring wavelengths

around 3 m, and photon counting detectors favoring wavelengths around 1µm[19].

Since no frequency band can be uniquely and unambigously identified as optimal for

interstellar communication, it seems that the best strategy is to search all of them as

the technology to do so becomes available.

1.8 Backgrounds

Even if a signal successfully traverses the hazards of interstellar space, there remains

the possibility that it would not be recognized as intentional because of some sort of

natural astrophysical or atmospheric phenomenon. The issue of astrophysics on very

short timescales has been investigated by Dravins [8]; the conclusion is that there are

no known astrophysical phenomena which could cause nanosecond pulses of visibile

radiation of the required intensity. The requirements for a natural astrophysical

system to generate a nanosecond pulse of the required intensity are quite demanding.

It must either be coherent, or at most centimeters in size and emit more than a

solar luminosity in equivalent isotropic radiated power in visible radiation. Although

coherent astrophysical sources of the required luminosity do exist (such as the water

maser in the galaxy NGC4258), none of these emit short pulses in the visible spectrum.

Another possible background are cosmic rays and the detritus that remains after

they collide with the upper atmosphere. Approximately 75% of the particles that

survive to reach sea level are muons [9], with a mean energy of 2 GeV and a differ-

ntial energy spectrum proportional to E−2 up to about 1 TeV where it steepens to
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E−3.6. The total flux is about 102 m−2s−1sterad−1 The muons have an zenith angule

distribution proportional to cos2 θ which transitions to sec θ at 1 TeV.

A charged particle radiates if its velocity is greater than the phase velocity of light

in the medium through which it propagates. This Cherenkov radiation is beamed

down a narrow cone with an opening angle θC = arccos
(

1
βn

)
where β is the speed of

the particle relative to the speed of light in vacuum. The muon mass is about 106

MeV and the index of refraction in air at one atmosphere is 1.000293, which means

muons with energies greater than about 4.4 GeV (β = 0.999707) will emit Cherenkov

radiation as they pass through the atmosphere.

Fortunately, the induced Cherenkov pulse is too diffuse to be collected by a tele-

scope with a narrow angle of admittance. Although a typical TeV muon does produce

a short (5 ns) optical pulse with about 30 photons/m2 falling on the base of the nar-

row light cone (∼ 150m on the ground), the source appears diffuse with a FWHM of

about 2◦, much larger than the field of view of the telescope which would only see

∼ 2 × 10−4 photons per flash [10].

1.9 Pileup

Another possible background are statistical fluctuations in the flux of stellar photons

which could accidentally “pile up” during a short enough period of time to be confused

with an intentional pulse. We can compute exactly how often to expect accidental

pileups as a function of the photon rate.

Let u = rt be the average number of photons expected during a time t if the overall

average rate is r photons per second. The Poisson distribution gives the probability

of exactly n photons

Pn(u) =
une−u

n!
(1.26)

and therefore the probability of m or more photons is given by

Qm(u) =
∞∑

n=m

Pn(u) (1.27)
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Since Pn(u) is a properly normalized probability we have

1 =
∞∑

n=0

Pn(u) =
m−1∑
n=0

Pn(u) +
∞∑

n=m

Pn(u) (1.28)

and therefore

Qm(u) = 1 −
m−1∑
n=0

Pn(u) = 1 − e−u
m−1∑
n=0

un

n!
(1.29)

An approximate value for Qm can be estimated by noticing that the second term on

the right hand side of equation (1.29) is the product of two factors, e−u and

m−1∑
n=0

un

n!
(1.30)

which is an m − 1 order approximation to eu. In particular,

m−1∑
n=0

un

n!
= eu − um

m!
+ O(um+1) (1.31)

and therefore

Qm(u) = 1 − e−u
m−1∑
n=0

un

n!
≈ 1 − e−u

(
eu − um

m!

)
=

ume−u

m!
= Pm(u) ≈ um

m!
(1.32)

which shows that, to leading order in u, the probability of m or more photons is equal

to the probability of exactly m photons.

In our experiment (described in detail in the next chapter), the light gathered by

the telescope is divided in half by a beamsplitter, and each half is used to illuminate

a detector. For our purposes, the question of pileup can be phrased precisely: if the

photon arrivals from the star at our telescope are goverened by the Poisson distribu-

tion for some rate r, what is the rate of events in which we get two or more photons

on each detector simultaneously?

Assuming a 50-50 beamsplitter, the requirement is for at least four photons (two

for each of two detectors) to come into the telescope during a detector resolving time

t. If the single photon rate is r, each single photon event represents an opportunity

for three-or-more photons to arrive during the interval t immediately after. Therefore
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the rate of four-or-more photon events must be

r × Q3(rt) (1.33)

where Q3 is given, both exactly and approximately, by equation (1.32). This result is

the rate of four-or-more photon events in the telescope; it must be multiplied by an

overall factor representing the effect of the beamsplitter to get the rate of two-or-more

photon events in both of two detectors.

As was shown in equation (1.32), the probability of m-or-more photon events,

Qm can be approximated to leading order in rt by the probability of exactly-three-

photon events, Pm. In this case, the rate of four-or-more photon events can be

approximated to leading order in rt by the rate of exactly-four-photon events. Each

of these four photons has a choice of two paths to take at the beamsplitter, and for

a 50-50 beamsplitter both choices are equally likely. The beamsplitter factor then is

the same as the probability of getting exactly two heads in four tosses of a fair coin:

the probability of a given configuration of two heads and two tails, (1/2)4, multiplied

by the number of such configurations that are possible:


 4

2


(1

2

)4

=
3

8
(1.34)

The final result for the rate of two photon pileups in both detectors is therefore, to

leading order in rt (using equation (1.32))

3

8
r
(rt)3

3!
=

r4t3

16
(1.35)

For comparison, we can calculate the rate of simultaneous two-photon events in

two beams of intensity r/2. The rate of two-photon events in one beam of intensity

r/2 is found by modifying equation (1.33), r/2×Q1(rt/2). Each two photon event in

one beam represents an opportunity for two or more photons to arrive in the other

beam within a time t, which has a probability of Q2(rt/2). Since the beams are
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interchangeable, there is an additional overall factor of two:

2 × r/2 × Q1(rt/2) × Q2(rt/2) ≈ 2 × r4t3

242!
=

r4t3

16
(1.36)

Which is the same result derived in equation (1.35).

It is interesting to see if this result can be generalized to the case of simultaneous

m-photon pileups in both of two detectors. In other words, for an arbitrarily large

photon pileup, is it the same to consider a beam of intensity r divided by a 50-50

beamsplitter onto two detectors as to consider two beams of intensity r/2 each with

its own detector?

Considering first the case of 2m photons in the telescope being divided up in a

50-50 beamsplitter, the rate of 2m pileups in the telescope is

r × Q2m−1(rt) ≈ r2mt2m−1

(2m − 1)!
(1.37)

and the beamsplitter factor is given by


 2m

m



(

1

2

)2m

=
(2m)!

(m!)222m
(1.38)

giving an overall rate of
2m

(m!)2
× r2mt2m−1

22m
(1.39)

Now consider two simultaneous m-photon pileups in two beams of intensity r/2. The

rate of m-photon pileups in one of the beams is

r/2 × Qm−1(rt/2) ≈ rmtm−1

2m(m − 1)!
(1.40)

and the probability of m or more photons in the other beam is

Qm(rt/2) ≈ rmtm

2mm!
(1.41)
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There is an overall factor of 2 since the beams are interchangeable, giving a rate of

2

m!(m − 1)!
× r2mt2m−1

22m
=

2m

(m!)2
× r2mt2m−1

22m
(1.42)

which is exactly the same result as in equation (1.39) for the case of single beam

divided by a beamsplitter.

Going back to the four photon case, for a typical photo-electron rate of 104 per

second and a detector resolving time of twenty nanoseconds, we get a pileup rate

of (104)4(20 × 10−9)3/16 = 5 × 10−9 per second, so on average such a pileup event

will happen every 2× 108 seconds or about every six and a third years of integration

time. It can therefore be concluded with great confidence that accidental pileup of

two photons in both detectors essentially never happens.

1.10 Transmission Strategy

The hypothesis we are testing is that an ETI might choose to initiate an interstel-

lar communication channel with its neighbors by illuminating them with a power-

ful, narrowly focussed laser. The advantages compared to radio wavelengths for the

transmitter are higher bandwidth, higher gain antennas and lower dispersion in the

interstellar medium. The advantages to the receiver are the ease with which a receiv-

ing apparatus can be built, and the fact that it can be a broadband receiver so that

a carrier frequency does not have to be guessed.

Suppose then, that the ETI illuminates all of the F, G and K -type dwarf stars

within 100 light-years of its own. In the neighborhood of our Sun, this means about

1000 stars. The most advantageous strategy for the transmitter would be to use

an adaptive aperture to keep the beam size fixed at the target. In doing so, the

transmitter can be sure to outshine its own star by a ratio of from 1 to 35 dB. If

the transmitting apparatus has a 10 Hz repetition rate, then all of the 1000 nearby

stars can be cycled through in 100 seconds, producing a pattern of bright flashes that

would be recognizeable to an observer of the transmitter’s star.
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The receiver’s problem, then, is to construct an apparatus that can distinguish

between these bright flashes and the background light of the transmitter’s star. That

is the objective of our instrument.
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Chapter 2

Experiment

In the previous chapter a scenario for interstellar optical communication was described

in which the transmitting civilization is obliged to create lasers of enormous power and

point them with pinpoint precision. By doing so, they make the receiving civilization’s

job much easier: it must only be able to distinguish a short pulse of laser light from

the background produced by the transmitter’s star. It is this objective that has guided

the design of our experiment.

2.1 Hybrid Avalanche Photodiodes

The property of an ultrashort laser pulse that distinguishes it from the background

light from the star is that the former delivers a relatively large number of photons in

a very short period of time whereas the latter almost never does (the possibility of

stellar photon pileup is discussed at length in the previous chapter). Therefore, to

begin with, we need a detector with a short resolving time that is capable of cleanly

distinguishing between multiphoton and single photon events.

The hybrid avalanche photodiode is just such a detector. An HAPD consists

of an avalanche photodiode behind a photocathode (as seen by incoming photons)

with a vacuum between them and a high voltage (-7500 V) across them. Photoelec-

trons emitted by the photocathode are accelerated by this field and injected into the

avalanche photodiode, where they deposit their energy in the depletion layer creating
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Figure 2.1: R7110U hybrid APD pulse height distribution

electron-hole pairs. Since the excitation energy of one electron-hole pair is 3.6 eV, a

gain of about 2100 is expected. In addition to this, there is an avalanche multiplica-

tion in the diode which gives another factor of 20 gain, for about 46 dB total gain in

the device. The important property of the HAPD, and what distinguishes it from a

conventional photomultiplier tube, is that the actual gain is does not vary much from

the expected gain.

The HAPD chosen for this experiment is the Hamamatsu R7110U. The R7110U

is a compact cylinder about two centimeters in diameter and two centimeters high.

These devices had only recently become available on the market at the time the

experiment was being developed, and to some extent the experiment served as a beta

test for the devices. Figure 2.1, taken from the manufacturer’s catalog, shows a pulse

height distribution for the R7110U phototube. It is clear from this Figure that a

discriminator set at the same voltage as ADC channel 125 would cleanly distinguish

between single photon events and multiphoton events.

Like all photodetectors, the HAPDs have a background “dark count” (signal in
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Figure 2.2: Block Diagram of the Experiment

the absence of any light). In addition, probably due to the high voltage bias applied

on such a small package detector, there are frequent (5–10 Hz) “hot events”: huge

bipolarity outputs with a ringing aftermath extending up to several hundred nanosec-

onds. Because of this hot event background, it would be very difficult to notice an

occasional transient signal by looking at the output of a single detector. Instead,

we divide the light from our telescope with a beamsplitter, illuminate two identical

detectors, and require a simultaneous output from both detectors for an event to be

considered real. We have also implemented a hot event veto (described in detail later)

that takes advantage of the fact that the hot events are bipolar but the photo-electron

events are not.

2.2 Implementation

The block diagram in Figure 2.2 shows the experiment. The 61-inch Wyeth Tele-

scope at Harvard University’s Agassiz Station Observatory in the town of Harvard,
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Massachusetts has been used for a stellar radial velocity survey for the past twenty

years. The radial velocity survey uses an echelle spectrograph to measure the spec-

tra of stars, and due to the narrow slit on the entrance to this instrument, a large

fraction of the light collected by the telescope for the radial velocity survey was (and

still is) thrown away. Our experiment piggy-backs on the radial velocity survey by

using most of this previously wasted light. The arrangement has proven to be very

advantageous because of the operational support by the people who run the radial

velocity survey (see the Acknowledgements section).

As shown in the block diagram, roughly a quarter of all of the light collected by

the 61-inch telescope ends up in our instrument (the “OSETI box”). The light in

the OSETI box falls on a beamsplitter (after passing through a focusing lens and a

focal-plane aperture that defines the sensitive area and reduces the amount of sky

light that falls on the detectors) whose outputs fall on two HAPDs. This is the

heart of the experiment, and all of the design decisions follow from it: light from

the telescope illuminates two detectors that are capable of cleanly distinguishing

a multiphoton event from a single photon event. If both detectors simultaneously

register a multiphoton event, the circumstances of this event are stored for later

analysis. Everything else in the experiment is subsidary to, and in support of, this

function.

The implementation of the coincidence detection is as follows (and is shown in the

block diagram, Figure 2.3). The outputs of the HAPDs are passed through two gain

stages (one inverting and one non-inverting) and then each is input into an identical

array of four comparators. The comparator threshholds within an array are set at

increasing voltages which correspond to two, four, eight and sixteen photo-electron

events at the detectors. The outputs of the lowest comparators are AND-ed together

to generate the coincidence trigger.

As has already been discussed, the HAPDs produce a fairly high number of “hot

events,” which have the property that the output spikes and then rings through a few

oscillations before returning to normal. These oscillations can be used to implement

a hot event veto: if either detector output goes negative after a positive pulse, then
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that event is vetoed. The implementation of the hot event veto is simply another

pair of comparators (one for each detector) which compare the detector outputs to a

negative voltage reference. These comparator outputs generate the hot event veto.

In general, we would like to have more information about these events than simply

that they happened and they weren’t vetoed. This is the reason for implementing

an array of four comparators per detector instead of just using a single pair set for

the lowest threshold. We want to know how high the output voltages went and when

they went there. This is the function of the LeCroy MTD135 eight channel fast

timestamp ASIC. The MTD135 is an extremely fast (capable of a time resolution of

0.5 nanoseconds, although we use 0.625 nanoseconds) chip that generates timestamps

every time one of its inputs makes a high-to-low or low-to-high transistion. The

MTD135 has storage capacity to hold the last sixteen timestamps on each channel.

The coincidence trigger, which is the AND-ed output of the lowest comparator from

each comparator array delayed by about 300 nanoseconds, stops the MTD135, freezing

the last few timestamps in memory to be read out by the microcontroller. The
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Figure 2.4: Coincidence reconstructed from MTD135 timestamps

microcontroller passes these timestamps on to the computer where the event is logged.

Figure 2.4 shows a typical event, recorded during an observation of the star

HD285830 on November 1, 1998 (night of October 31 – November 1) at 08:45:54

UTC, reconstructed from the MTD135 timestamps. In this case, the output of both

detectors crossed the comparator threshholds set for two, four and eight photoelec-

trons about 298 nanoseconds before the trigger event which stopped the MTD135.

The output fall time for the detector is seen to be somewhat slower than the rise

time, as expected.

2.3 Diagnostics

In addition to the basic functionality of being able to detect and record coincident

events from both detectors, the experimental apparatus includes circuitry for self-

diagnosis and monitoring. In fact, each observation begins with a series of diagnostic

tests to ensure that the instrument is functioning normally. If any of these tests fail,
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then the observation does not proceed.

It is worth digressing on the subject of the design philosophy that guided the

firmware (microcontroller program) and its relationship to the software that runs on

the computer and controls the experiment (the so-called “OSETI daemon”). The

firmware design is “transactional”, by which it is meant that commands are received

from the computer (via a standard RS-232 serial port), executed immediately, and

their results returned to the computer (via the same RS-232 serial port). The mi-

crocontroller does nothing autonomously except to report coincidences when they

happen. So, for example, if one of the power supply voltage monitors indicates that

the supply has gone out of its nominal range of acceptable values, the microcontroller

will nonetheless start an observation if the computer instructs it to do so. Further-

more, all of the commands and responses are ASCII encoded, so that it is possible

to perform diagnostics on the apparatus by connecting a dumb terminal to it and

simulating by hand the commands that the OSETI daemon would have generated,

and then reading the microcontroller’s response to these commands.

The diagnostics phase of the observation consists of a set of transactions between

the OSETI daemon program on the computer and the microcontroller in the appa-

ratus. To begin with, the computer must be certain that there is a microcontroller

listening on the serial port to deal with the commands it will send; to do this it just

sends an empty line (a single ASCII carriage return). The microcontroller should

respond with a string containing the name and version number of the apparatus, as

of this writing “OSETIbox 2.0.”

The apparatus contains six power supplies providing ±5 volts, +24 volts, +15

volts, -7500 volts (the photocathode supply) and +150 volts (the avalanche photo-

diode supply). Five of these supplies are monitored by MC34161 universal voltage

monitors. These ICs contain “window comparators,” which are really two compara-

tors with open collector outputs and with thresholds above and below the nominal

supply voltage defining an acceptable range for the supply, which indicate when the

supply is within this range. The outputs of the monitors on the +24, +15 and -5

volt supplies are wired together to produce a single output which is available to the
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microcontroller. The other two monitors provide independent information on the sta-

tus of the +5 and -7500 volt power supplies; the +150 volt supply is not monitored.

Therefore, in total there are three bits returned by the microcontroller in response to

a query for voltage monitor status: the first gives the status of the +5 volt supply,

the second gives the combined status of the +24, +15 and -5 volt supplies and the

third gives the status of the -7500 volt supply.

If the microcontroller is responding and the power supplies are all within their

nominal range, the next (perhaps most important) test is to check to see if the

photodetectors can see light. As can be seen in the electrical block diagram (Figure

2.3), the microcontroller can flash an LED whose output is carried by an optical fiber

to the otherwise unused fourth port of the beamsplitter. This generates a flash in both

of the two detectors, which should be reported as a coincidence by the microcontroller.

If all the tests up to this point are passed successfully, then we can be confident that

all of the essential components of the system are functioning properly. The next two

diagnostics provide information about the instrument performance on the particular

target on the particular night that the observation takes place. As can be seen in the

block diagram, Figure 2.3, the microcontroller can control the comparator thresholds,

in particular, it can lower them so that the lowest comparator threshold is at the level

expected for a single photoelectron. The outputs of the two lowest comparators are

steered through a multiplexer (also under the control of the microcontroller) into a

sixteen bit counter, which can be read out by the microcontroller.

The procedure is to lower the thresholds, wait for 0.3 seconds and then read out

the counters. This “low threshold count rate” gives some information about how

bright the star is. Next, the thresholds are returned to their normal, higher levels

(where the lowest comparator threshhold corresponds to two photoelectrons) and

once again the count rate is measured by allowing the counters to accumulate for 0.3

seconds and then reading them out. This is the “high threshold count rate”. In all

of the development that follows in this thesis, “count rates” will always refer to the

measurements made during this phase of the diagnostics, before the integration on

the star begins.
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2.4 Computers

The communication that takes place between the microcontroller and the Linux PC,

which runs the OSETI experiment, is recorded in an ASCII log file stored on the Linux

PC. This computer also talks to the Sun workstation that runs the radial velocity

survey so that it knows when the telescope is on target, and what the target is. That

information is transmitted to from the radial velocity workstation to the Linux PC

over the observatory’s local area network at the beginning of the observation, and is,

in fact, the event that triggers the diagnostics phase and the integration that follows.

The software that runs on the Linux PC (the “OSETI daemon”) has been kept

very simple. The minimum requirements are that it must be able to talk to the

instrument through a serial port, to the main observatory computer over the network,

and it must record everything it does in a file for later analysis. Everything has been

designed for maximum transparency: the serial protocol, network protocol and log

file format are all in human-readable ASCII, a design choice which makes it easy to do

diagnostics on any one of these subsystems independently by simulating the others.

For example, to test the OSETI daemon, you do not need to involve the radial velocity

survey’s Sun workstation even though this is normally how the daemon is activated.

Instead, you can simply telnet to the TCP port that the daemon is listening on from

any computer (including the OSETI Linux PC itself) and type the magic activation

word “start”. Furthermore, to test the OSETI instrument itself, the involvement of

the OSETI Linux PC is not required; you can simply connect a dumb terminal (or

another computer running a terminal emulator) and type the commands that the

OSETI daemon would have sent. And finally, no special software is required to read

and understand the English text in the log file.

Figure 2.5 is a flow chart showing how the OSETI daemon works. Actions taken

by the daemon itself are in boxes and events outside of the daemon that can cause

it to respond label the arrows. Briefly, the way the system works is that the OSETI

daemon listens for incoming connections from the network on TCP port 8001 (the

box labelled “listening”). After accepting the connection, if the daemon receives the
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Figure 2.5: OSETI daemon flow chart

ASCII string “start” from the network, it puts the instrument through the series of

diagnostics described in the previous section. All actions are recorded into a log file

(normally stored in /var/log/osetilog.YYYYMMDD, where YYYYMMDD is replaced with

the year, month and day of the previous local noon). If any of these diagnostic tests

fail, then the daemon will send “not ready” back through the network connection.

Otherwise, it will send the word “ready”. Then the daemon expects to receive the

header information (containing the name and magnitude of the target star, observer’s

name and weather conditions, etc.). The daemon does not interpret this header at all,

but just copies it verbatim into the log file. After receiving and recording the header,

the daemon activates timestamping by the MTD135 and waits. If the microcontroller

reports a coincidence, the circumstances are recorded into the log file. Otherwise,

the daemon continues to wait until it receives the word “stop” from its network

connection, indicating that the integration is finished. A very simple “keepalive”

protocol runs during the integration to make sure that the computer that started

the integration has not failed during the integration. Every ten seconds, the OSETI
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daemon sends the word “tick” out on its network connection. If it does not receive

the response “tock” within five seconds, then the observation is terminated and the

daemon goes back to waiting for an incoming network connection.

The simple protocol shown in Figure 2.5 was very easy to hook into the existing

radial velocity survey software. The software that runs the radial velocity survey in-

strument was modified slightly so that it would generate the network events necessary

to start and stop the OSETI daemon and to participate in the “keepalive” protocol.

This design meant the supporting the OSETI experiment did not require the radial

velocity survey observers to make any changes to their normal operating procedures.

2.5 Database

Reading the English text in the log file is an excellent way of diagnosing problems

with the system; however, it is not a practical way of handling the massive amounts

of data accumulated over three years of observations. For that, what is really needed

is a database. Furthermore, the process of retrieving the data from the observatory

and storing it in the database should be as automatic as possible. Finally, it should

be possible for an investigator to answer simple questions about the data without

needing to know implementation details about the database. All of these desiderata

were achieved relatively easily by taking advantage of some standard Unix utilities

and the PostgreSQL database backend (a free software project).

First, the log file that is stored on the OSETI computer at the observatory must

be transferred to the server in Cambridge. This is done by a Unix shell script run

automatically once at day at 12:05 PM. The same shell script then executes a relatively

complicated Perl script that parses the log file into the database and then emails a

summary to the project investigators. As header and file formats have changed over

the years it has become necessary to make this Perl script extremely adaptable both to

parse the new formats and to maintain backward compatibility with the old formats.

Doing this in an elegant and maintainable fashion was perhaps the most difficult

programming challenge in this experiment.
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Once the data are in the database, it becomes possible to manipulate and analyze

them in almost any way imaginable. However, doing so requires the investigator to

have a good command of the database language SQL (“Structured Query Language”)

as well as another programming language that it will be embedded into (such as Perl or

C). Since this is a fairly substantial burden it forms a barrier between the investigators

and the data. Therefore, additional Perl scripts were written to enable access to the

database via the web. Although this method is much less flexible than an interactive

command line session with the database, it is much more widely accessible and can

easily provide the most common database queries.

2.6 Modifications for second observatory

As will be described in detail later, during normal operations of our experiment we get

between zero and a few (typically a handful) coincidences per night of observing. An

opportunity for implementing an excellent means of coping with these background

events presented itself when a group of investigators in the physics department at

Princeton University (D. Wilkinson, E. Groth, N. Jarosik, et al) expressed an interest

in participating in our OSETI program.

The idea is to have both observatories pointed at the same target at the same

time. Then the pair of observatories works analogously to the pair of detectors in

the instrument: any event seen by both observatories simultaneously is much more

likely to be real than an event only seen by one or the other. To get some idea

of the noise rejection improvement, suppose that the event rate at one observatory

is about 5 per hour = 1.4 × 10−3 per second (the average value for the Harvard

observatory at this writing is 0.4 per hour) and that the timing uncertainty is 1

microsecond. Then the rate of accidental simultaneous events at both observatories

is just (1.4 × 10−3)2(1 × 10−6) = 2 × 10−12 per second, or about once every sixteen

thousand years.

Furthermore, if it is possible to time the events at each observatory with sufficient

precision, the distance between the observatories can be used as a timing baseline.
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Figure 2.6 shows the geometry. In the figure, the vector from Princeton to Harvard

has been chosen as the axis of the celestial sphere. Light from stars above the plane

perpendicular to this axis that goes through the center of the celestial sphere (the

“equator”) will arrive at Harvard before Princeton and light from stars below this

plane will arrive at Princeton before Harvard. The time difference between a signal

arriving at Harvard and the same signal arriving at Princeton, ∆t, is just the inner

product of the vector from Princeton to Harvard (with distance measured in light

travel time) with the unit vector from the center of the celestial sphere to the position

of the star. This difference is a maximum for stars that are on the “poles” of the

celestial sphere shown in Figure 2.6, and its value at maximum is just equal to the

light travel time from Harvard to Princeton, or about 1.6 milliseconds. Furthermore,

for any given time difference less than this maximum, there is a circle on the celestial

sphere perpendicular to and centered on the Princeton-Harvard vector and every point

on this circle satisfies the condition that the inner product of its unit position vector

with the Princeton-Harvard vector is equal to the given time difference. This circle is
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broadened into an annulus by the timing uncertainty in the experiment. Therefore,

all points within this annulus can be considered to “satisfy” a given ∆t, but no other

points on the celestial sphere do.

Therefore, if the two observatories see nearly simultaneous events, we can be

more confident that the source of the events was extra-terrestrial if the annulus on

the celestial sphere corresponding to the measured time difference between the two

observatories contains the star that was being observed. The better the timing ac-

curacy at the two observatories, the narrower the annulus becomes and the more

confident we can be that a signal satisfying all these conditions is really from the star

we were observing. If D is the light travel time from Princeton to Harvard and θ is

the angle between the Princeton-Harvard vector and the star’s position vector, then

∆t = D cos θ (2.1)

so that
d(∆t)

dθ
= −D sin θ (2.2)

which gives the relationship between the angular uncertainty (the width of the annu-

lus) and the timing uncertainty

dθ =
−d(∆t)

D sin θ
(2.3)

The singularity at θ = 0 has no serious practical implications since the vector between

Princeton and Harvard goes below the horizon.

From the discussion above, it is clearly desirable for each observatory in a two-

observatory configuration to have a high quality timestamp referred to universal time

for every coincidence event. These universal timestamps are not to be confused with

the timestamps generated by the MTD135, which are referred to the trigger events

but not to any globally significant time standard. Therefore, additional circuitry was

required to provide time stamps referred to an external, universal time standard.

The availability of inexpensive GPS reference clocks and frequency standards
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makes it easy to implement a timestamp of the kind required. Off-the-shelf mod-

els can produce a very stable 10 MHz and pulse-per-second signal as well as a serial

ASCII data stream for synchronizing a computer clock. Simply put (refer again to

Figure 2.3), the modifications made to the OSETI instrument were to add a 24-bit

counter that is clocked by the 10 MHz from the GPS receiver, reset by the pulse-

per-second, and latched by the coincidence trigger. This provides us with a UTC

timestamp with a 100 nanosecond granularity modulo one second which the micro-

controller in the instrument can read out at its leisure. To determine which second, we

use the serial data stream from the GPS receiver to synchronize the system clock on

the computer running the OSETI daemon to UTC to within few milliseconds. When

the microcontroller reports a coincidence to the computer, it records the system time

with a precision of one millisecond. Since we know it should take the microcon-

troller no more than some tens of milliseconds to transmit the coincidence data to

the computer, we can effectively generate a full timestamp referred to UTC for each

coincidence.

Since the OSETI instruments used at both observatories are nearly identical, we

re-implemented the circuit in Figure 2.3 as a printed circuit board (it had originally

been executed in wire-wrap by Jonathan Wolff; Anne Sung laid out the printed cir-

cuit), and then modified it to support the precise timing requirement by adding a

daughterboard that holds the counter and line receivers for the 10 MHz and pulse-

per-second signals from the GPS receiver. One copy of the populated printed circuit

was delivered to the group at Princeton and installed in their instrument.

In addition to the modifications to the electronics already described, observing

simultaneously at two observatories required some modifications to the software in-

frastructure at both ends. Both observatories have computer controlled telescopes,

although the design of the software at each observatory is radically different. How-

ever, since the OSETI instruments were functionally identical, it was desirable to use

the same OSETI daemon software at both locations.

The modification to the Princeton telescope software basically amounted to adding

enough network functionality for it to act as a “server” for the “client” at Harvard.
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Once again, the server listens on a TCP socket for an incoming connection on port

8002, when it receives a connection request it is accepted and data are read from the

resulting connection socket until an end-of-file marker is reached. These data contain

the name and coordinates of the star to which the Harvard observatory is moving,

formatted in human-readable ASCII. The Princeton computer parses the coordinates

and then presents the telescope operator with the option to acquire the new star or

ignore the request entirely.

If the telescope operator chooses to acquire the new target, then the telescope

is automatically slewed to the new position and the telescope software opens a new

network connection (this time as the client) to a copy of the OSETI daemon which

happens to be running on the same computer. The Princeton telescope software uses

the same OSETI daemon protocol (shown in Figure 2.5) that is used by the Harvard

telescope software, so no modifications of the OSETI daemon were necessary.

The modification to the Harvard software consisted of adding the network client

functionality to send target coordinates to Princeton when the Harvard telescope

operator decides to move to a new target. Because the Harvard telescope could

spend as little as two minutes integrating on bright stars, it was necessary to send the

coordinates at the earliest possible opportunity, even before the integration begins.

In practice, it has turned out that the Princeton telescope is usually on target before

the Harvard telescope because their system is more automatic.
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Chapter 3

Analysis

3.1 Introduction and nomenclature

At the time of this writing, the targeted optical SETI program has been running

for three and a half years (since October of 1998) at Harvard, and seven months

(since October of 2001) at Princeton. During that time, the two observatories have

accumulated a total of over 150 days of integration time on the sky, making 28,000 ob-

servations of 8,000 different stars. All of the data acquired during the entire program

are stored in a single database occupying 130 megabytes.

As has already been described, the data collected by this experiment are the

circumstances of coincident outputs of the two phototubes and the results of several

diagnostic tests run at the beginning of every observation. These data are kept in

the database with information about the integration time, the name of the target

and some information about the weather at the observatory during the observation.

In the analysis that follows, the following nomenclature will be used (Figure 3.1 is a

diagram of the relationships among the terms listed below).

1. An observation consists of two phases, a diagnostic phase during which a

set of measurements are made to ensure the instrument is functioning properly

followed by an integration lasting from two to thirty minutes during which

triggers (see below) are recorded.
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Figure 3.1: Diagram showing the relationship between the terms used in analyzing
the OSETI data.

2. The diagnostic phase consists of two parts. The first is a set of tests to verify

that the instrument is functioning properly. This includes making sure that

power supplies are within their nominal voltage ranges and that the detectors

can see a short flash of light generated by an LED. The second part is a set of

measurements used to characterize the instrument performance at the time of

the observation.

3. High and low thresholds: Each phototube output is amplified and then input

into an array of four comparators (see Figures 2.2 and 2.3). Within each array,

the comparator thresholds are exponentially increasing: if the lowest compara-

tor is set for a voltage V0, then the remaining three will be at 2V0, 4V0 and

8V0. The overall scale of these thresholds, V0, can be switched between two

settings called the high and low threshold settings. The high threshold setting

is the one used during integrations. It is set such that V0 is greater than the

amplified single-photo-electron output of the detector, and therefore none of the

comparators should produce any output for single-photo-electron events at this

setting. The low threshold setting is only used during the diagnostic phase of

an observation. It is set such that V0 is less than the amplified single-photo-

electron output of the detector, and therefore the lowest comparator output
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should toggle for every single-photo-electron output at this setting.

4. Low and high threshold count rates: The output from the lowest compara-

tor in each comparator array is connected to a counter. During the diagnostic

phase of an observation, we measure the number of counts accumulated during

two intervals lasting 0.1 and 0.2 seconds for each of the two detectors and for

each of the two threshold settings for a total of eight numbers. These numbers

are combined as follows.

The low threshold setting counts the number of outputs exceeding a single-

photo-electron threshold from each of the detectors during each of the two time

intervals. Therefore, a measure of how much light is getting into our apparatus is

the sum of the number of counts for the two intervals and for the two phototubes

divided by 0.3 seconds; this is called the low threshold count rate.1

At the high threshold setting, the lowest comparator output should not be

exceeded by single-photo-electron outputs from the detectors. Since this is the

setting used during integration, if both detectors simultaneously exceed the

lowest threshold of their respective comparator arrays at this setting it will

cause a trigger.2 A measure of how often we should expect accidental triggers

is the sum of the number of counts for both of the time intervals for each

detector separately. This is the high threshold count rate for each detector.

The geometric mean of the two high threshold count rates is used if a single

high threshold count rate for an observation is needed.

5. Hot events are abnormal outputs from the detectors characterized by a very

large output (well in excess of the high threshold comparator setting) followed

by a few oscillations of ringing. A veto circuit should prevent simultaneous

1The largest legitimate value that could be obtained by summing the values of a 16-bit counter
during 0.1 and 0.2 second intervals is (32767 + 65535)/0.3 ≈ 3.3 × 105. The counter behaves oddly
when it rolls over; the manifestation of this is that one of the two intervals shows a count near 65535
when the actual number is much smaller. This shows up in the scatter plots that follow as a cluster
of points near 2.18 × 105 = 65535/0.3.

2Assuming that the event passes the “hot event” veto.
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hot events from becoming a trigger; however, they will be included in the high

threshold count rate because the counter is not affected by the veto.

6. Coincidences, triggers and events: When both detector outputs simulta-

neously exceed the lowest comparator threshold this is called a coincidence. If

the coincidence is not vetoed, the MTD135 is triggered, and the time stamps of

the comparator crossings will be recorded and stored into the database. This

is called a trigger. Because there is a 300 nanosecond delay between the initial

threshold crossing and the trigger, it is possible for threshold crossings during

this interval to overwrite the LIFO memory in the MTD135. This generally only

happens when there is a high rate of hot events. The result is an amalgam of

several unrelated events and no single waveform can be reconstructed from the

time stamps. Otherwise, if the time stamps can be assembled into waveforms

for each detector and these waveforms overlap and peak within one threshold

of each other, then the trigger is considered an event. All events are triggers,

but only those triggers satisfying our validity tests are events.

We also define a trigger rate to be the number of triggers recorded during an

observation divided by the integration time. The event rate is defined analo-

gously.

7. Visual magnitude: The visual magnitude of a star is a logarithmic measure of

its brightness that is tabulated in standard astronomical catalogs. It is defined

to be proportional to the logarithm of the photon flux F (photons per second

per square meter) through a Johnson-Cousins photometric V filter (centered at

550 nanometers with a width of about 180 nanometers) as

log10 F = −2

5
m + const. (3.1)

The constant can be determined as follows. Standard astronomical references [3]

give the flux for a magnitude zero type A0V star as 3.75×10−9 erg cm−2 s−1 Å−1.

The width of a Johnson-Cousins V filter is 1800Å, so we expect about (3.75 ×
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10−9) × 1800 = 6.75 × 10−6 erg cm−2 integrated over the entire V band. A

550 nm photon has an energy of about 3.62 × 10−12 ergs (about 2 eV), giving

1.87 × 1010 photons per second per square meter for a magnitude zero star.

Therefore, the relationship between photon flux F in the V band (photons per

square meter per second) and visual magnitude m is

log10 F = −2

5
m + 10.3 (3.2)

As will be explored in detail below, at Harvard we get about 1.5 triggers and 0.4

events per hour of observation, and at Princeton we get about 11 triggers and 0.4

events per hour of observation. We have good reason to believe that all of these events

are an instrumental background. Unfortunately, there is no way to distinguish an

individual background event from a real event based on the data from the instrument

alone. This is an important factor in determining the sensitivity of the experiment

to intermittent transmissions.

The major objective of this analysis is to try to discover if any relationships exist

between the behavior of the instrument as measured during the diagnostic phase of

the observation and the rate of triggers and events during the integration. If such

relationships exist, they could shed light on the physical origin of these background

events and provide us with an indication of how to eliminate them.

3.2 Harvard data: counts versus magnitude

At the beginning of every observation, the low threshold count rate is measured. Since

this value is measured with the comparator thresholds lowered to single-photo-electron

levels, it is expected to reflect the brightness of the star being observed. In particular,

it should fall exponentially as the visual magnitude of the stars observed increases (see

Equation 3.2). Some deviation from this ideal curve is expected because the detector

sensitivity is peaked at about 450 nanometers, and has a width of 250 nanometers, so

it is both bluer and wider than the photometric V filter that is used to define visual
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Figure 3.2: Scatter plots of low threshold count rate versus visual magnitude from
observations made at the Harvard observatory during December 2000 (left) and De-
cember 2001 (right). The line corresponds to log10 F = −2

5
m + 7.3.

magnitudes. Therefore, the count rate from stars of equal visual magnitude will

depend on their spectral type. Furthermore, the detectors always produce a certain

rate of dark counts even when they are not illuminated. For very faint targets, this

dark count rate can dominate the photo-electron counts from starlight. Since this

dark count rate depends on external factors (notably temperature), in introduces

additional variability in the low threshold count rate for fainter stars.

Figure 3.2 shows two scatter plots of the low threshold count rate versus visual

magnitude from observations made at the Harvard observatory during the months of

December 2000 and December 2001 (note the logarithmic y axes). Each point in these

plots represents the data from a single observation. It is clear from these plots that

the system was working as expected in December 2000, but not at all as expected a

year later. As can be seen from Appendix A, which contains plots such as the ones

in Figure 3.2 for every month of the OSETI program so far, this transition from data

that show a correlation between count rate and visual magnitude to data that do not

has happened at least twice during our program.
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An investigation into this problem revealed that our instrument had gone out

of alignment with the slit spectrograph used by the radial velocity survey. Since

the telescope operators always guide the telescope so as to illuminate their slit, this

meant that our instrument was not being illuminated. This misalignment persisted

from June of 1999 through November of 2000 and from June of 2001 through May of

2002, during which time observations accumulating 2,160 hours of integration took

place. This leaves 1,212 hours of integration from observations during the periods of

good alignment.

For purposes of finding extraterrestrial signals, it is of course essential to have

the instrument aligned with the telescope. However, any background present in the

absence of starlight will remain when the instrument is aligned properly. Therefore,

for purposes of studying the background it is reasonable to include the data from the

misaligned periods, but for purposes of setting a limit on the prevalence of civilizations

transmitting signals according to our scenario, only the data from the well aligned

periods can be used.

The diagonal line in the plots in Figure 3.2 corresponds to the equation

log10 F = −2

5
m + 7.3 (3.3)

We can use this formula to make a rough estimate of the ratio of the number of

photons detected to the number of photons entering the aperture of the telescope.

Our instrument should get about one quarter of the light from the 61 inch diameter

circular aperture (the rest goes to the radial velocity survey instrument and guide

camera), corresponding to an effective collecting area of 0.47 square meters. Equation

3.2, rewritten as

F = 1010.3−2m/5 (3.4)

gives the expected flux in photons per square meter per secondas a function of mag-

nitude, so the expected flux entering the aperture of our telescope is

F = 0.47 × 1010.3−2m/5 ≈ 1010−2m/5 ⇒ log10 F = −2

5
m + 10 (3.5)
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so the constant term in Equation 3.3 corresponds to an overall efficiency of 10−2.7 =

0.2%

As can be seen in the block diagram, Figure 2.2, starlight is reflected by four

mirrors, divided by two beamsplitters and focussed by one lens before reaching our

detectors. A reasonable value for the efficiencies is about 85% for the mirrors and

about 92% for the beamsplitters and the lens. The quantum efficiency of the detectors

is about 10% averaged over their bands, so the expected overall efficiency is roughly

(0.85)4(0.92)3(0.10) ≈ 4% (3.6)

This leaves a discrepancy of a factor of 16 between the expected efficiency and the

measured efficiency. Such a low efficiency is a serious problem since it implies a

proportional increase in the required transmitter power for a detection. However, it

is not clear why the efficiency is so low. The telescope primary mirror was recoated in

October of 2000, not long before the data in the left panel of Figure 3.2 were taken,

and so it seems unlikely that mirror inefficiencies are to blame. This discrepancy will

be investigated further.

3.3 Harvard data: seasonal variations

Figure 3.3 shows a plot of average trigger rate versus time for the three and a half

years of the targeted optical SETI program at Harvard. The average values plotted

in the figure were calculated by summing the number of triggers and independently

summing the integration times of observations until the integration time exceeded

thirty hours. The average trigger rate was then calculated as the ratio of number of

triggers divided by integration time and the process started over again. As can be

seen from the figure, the trigger rate goes up by a factor of 30–40 during the summer

months, and then back down again in winter.

One possible explanation that was investigated was that the APD gain was going

up in summer because of warmer temperatures. This temperature coefficient is a well
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Figure 3.3: Seasonal variation in the trigger rate from October 1998 until May 2002

known phenomenon of APDs, and can be cancelled out by temperature compensating

the APD bias voltage. High voltage supplies designed for use with APDs typically

have this temperature compensation built in, and ours is no exception. In order to

verify that this temperature compensation was working as intended, we examined

the HAPD outputs on a hot day in summer to make sure that the waveforms (and

particularly their peak values) had not changed since the previous winter; they had

not. Prior to the collaboration with Princeton, we had not found a good way of

dealing with the data from the summers apart from just throwing it away.

The more likely explanation is that this seasonal variation is a manifestation of

the well-known sensitivity of phototubes to humidity. The high voltage bias on the

photocathode, -7,500 volts, can lead to sparking and corona discharge during periods

of high humidity. Since this seasonal variation was discovered, some considerable

effort has been expended in trying to keep the instrument sealed from infiltration by

humidity, and to pump dry nitrogen through it. These efforts do not seem to have

had a significant impact on the summertime trigger rate, unfortunately.
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3.4 Harvard data: triggers and events

Recall that the MTD135 LIFO memory that holds the timestamps until they are read

out by the microcontroller can be overwritten during the 300 nanosecond window of

opportunity between the coincidence and the trigger (see Figures 2.3 and 3.1). When

this happens, the timestamps as read out by the microcontroller usually make no sense

at all since they are really an amalgam of the several events that happened during the

300 nanosecond window. There are a number of validity tests that can be imposed

on the timestamps to exclude most of these triggers from consideration. These can

be summarized as three requirements: that it must be possible to reconstruct some

waveform like the ones shown in figure 2.4 for each of the two detector outputs; that

the waveforms must overlap in time; and that the highest thresholds exceeded by

each must be within one threshold level of the other.

If, as seems reasonable, we assume that all of the triggers recorded so far are

false alarms, then a measure of how effective the validity tests are is the ratio of

the number of events to the total number of triggers. As of this writing, the total

number of triggers in the Harvard data (including data from the misaligned periods)

is 7536 and the number considered to be events is 2312, or about 31%. An interesting

question in view of the seasonal variation in the trigger rate presented in the previous

section is: is it the case that a fixed percentage of triggers pass all of our validity

tests, or does it vary seasonally or perhaps from one target to another? One might

hope that as the trigger rate goes up in the summer the ratio of events to triggers

would go down to compensate, but this does not appear to be the case.

Figure 3.4 shows the average ratio of events to triggers at various points in time

during the Harvard OSETI program from October 1998 until May 2002 (including

data from the misaligned periods). The figure was generated by adding up the number

of events and independently the number of triggers from observations in chronological

order until the total integration time exceeded thirty hours, then plotting the ratio and

starting again. The ratio stays within one and a half standard deviations of the global

average value of 0.31 with the exception of two periods around September of 1999
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Figure 3.4: Averaged events/triggers ratio versus time during the OSETI program.
Each point represents an average over observations adding up to thirty hours of total
integration time. The horizontal line marks the global average value of this ratio,
0.31.

and September of 2000 when is it significantly higher and then lower, respectively.

Since these are opposite behaviors at the same time of year, the conclusion must be

that there is no seasonal dependence.

The question of seasonal dependence can also be addressed indirectly. Suppose

that we select only observations where there was exactly one trigger. If our hypothesis

that the validity tests always mark a fixed percentage of the triggers as events is right,

then we would expect that 31% of these observations would record the trigger as an

event and the remaining 69% would record it as just a trigger. Carrying on, if we

select only observations where there were exactly 2 triggers, then we would expect

the weighted average would be 0.31, that is

〈
events

triggers

〉
=

0 × N0 + 1 × N1 + 2 × N2

2 × (N0 + N1 + N2)
= 0.31 (3.7)
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where Ni is the number of these observations recording i events. In general, for the

set of observations with n triggers, we expect that

∑n
i=0 iNi

n
∑n

i=0 Ni

= 0.31 (3.8)

This is just the ratio of the number of events to the number of triggers where attention

has been restricted to those observations returning a total of n triggers. Since ob-

servations made during the summer get a much larger number of triggers, a seasonal

dependence in the ratio of events to triggers should manifest itself as a departure

from the expected value as n gets larger.

Figure 3.5 is a plot of Equation 3.8 for all of the Harvard data. The plot shows

that the ratio of events to triggers does not depend on the number of triggers per

observation, whereas figure 3.3 shows quite clearly that the number of triggers per

observation does depend on the season (there are more triggers in the summer even

though there are fewer observations due to the shorter nights). Once again, the

conclusion is that the ratio of events to triggers also does not vary seasonally the way

the overall number of triggers does.

To paraphrase, although any real signal would have to pass our validity tests, it

seems that quite a few that aren’t real also pass. If our interest is in finding real

signals, then the validity tests will eliminate more than two-thirds of the background.

On the other hand, if our interest is in studying the background, then we might as

well choose to include the triggers that don’t pass the validity tests, since excluding

them only reduces the number of triggers available for analysis without altering their

underlying statistics.

3.5 Harvard data: triggers versus counts

Figure 3.6 shows two scatter plots of the Harvard trigger rate versus the low and high

threshold count rates. There is no obvious correlation between the two quantities

shown in either plot. This result was expected, since the low threshold count rate
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Figure 3.5: Ratio of events to triggers versus number of triggers per observation. The
horizontal line marks the global average ratio, 0.31

should reflect the magnitude of the star, and the high threshold count rate should

reflect the rate of hot events. Neither of these should cause triggers because stellar

photon pileup is very rare ( even very bright stars should rarely produce accidental

triggers), and hot events are vetoed before they can become triggers.

However, this result forces us to come up with a different explanation for the

seasonal variation in the trigger rate at Harvard than that it is caused by an increase

in the number of hot events during the summers. If this were true then there should

be a correlation between the high threshold count rate and the trigger rate.

The question of whether there exists a seasonal variation in the hot event rate can

be addressed directly by looking for a corresponding variation in the high threshold

count rate. Figure 3.7 shows a plot of high threshold count rate averaged over ten

observations versus time. There is some seasonal variation, it is not nearly as strong

as the variation in trigger rate shown in figure 3.3.

The conclusion is that, at least for the Harvard data, whatever is causing the
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Figure 3.6: Scatter plots of trigger rate versus low (left) and high (right) threshold
count rates for the Harvard data

Figure 3.7: High threshold count rate, averaged over ten observations, versus time
(October 1998 to May 2002). Compare this to the seasonal variation in trigger rate
in figure 3.3
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triggers is not showing up in either the high or low threshold count rates. The most

likely explanation is that the count rates, and especially the high threshold count rate,

are measured during intervals that are too short (0.3 seconds) to catch a statistically

significant number of the events that show up during the much longer integration

periods (2–30 minutes). Since the hot event rate is usually about 5–10 Hz, you would

expect to count between zero and three such events during a 0.3 second time period.

So the high threshold count rate as it is currently measured, is always limited by

small-number statistics.

3.6 Princeton data: counts versus magnitude

Figure 3.8, shows a scatter plot of low threshold counts versus visual magnitude for

the Princeton data. The horizontal line of points near 2.2×105 Hz is the same counter

rollover artifact already discussed. Other than that, the points cluster relatively close

to the line

log10 F = −2

5
m + 6.5 (3.9)

shown in the figure. The collecting area of a 36-inch (diameter) aperture is about 0.66

square meters, so from equation 3.2 we would expect the constant term in equation 3.9

to be about 10.1, which indicates a system efficiency of about 0.02%. The expected

efficiency is about 75 times greater than this. An adequate explanation for this

discrepancy has not yet been found. There are taps on the detector outputs available

on the front panel of the instrument, and when a laboratory counter was connected

to these the measured efficiency was about 1.5%, so a likely explanation is that the

low comparator thresholds are too high.

3.7 High versus low threshold count rates

Figure 3.9 shows scatter plots of high versus low threshold count rates from both

observatories side by side. A significant difference between the two observatories is

that the data from Princeton show a clearer correlation between the measured low
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Figure 3.8: Scatter plot of low threshold count rate versus visual magnitude for the
Princeton data. The horizontal line is a counter artifact.

and high threshold count rates (N.B., the Harvard plot does not include data from

the misaligned periods). Once again, the cluster of points near the x axis at 2.2×105

Hz is an artifact of the rollover of the 16-bit counter.

If our belief that the high threshold count rates reflect the rate of “hot events”

is correct, then there should be no correlation with the low threshold count rate.

Of course, any detector output which exceeds the high threshold setting will also

exceed the low one and therefore all high threshold counts are also low threshold

counts. However, there are typically orders of magnitude more low threshold counts,

i.e. the low threshold count rate should be dominated by single-photo-electron events

whereas the high threshold count rate should be dominated by hot events, and we do

not believe the two types of events are correlated.

Clearly, although this model might apply to the Harvard data on the left in Fig-

ure 3.9, something else is going on in the Princeton data on the right. The most

likely explanation is that some single-photo-electron events at Princeton are exceed-
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Figure 3.9: Scatter plots of Harvard (left) and Princeton (right) high versus low
threshold count rates. The y-axis scale has been expanded on the Harvard plot.

ing the high threshold setting, i.e., this threshold has been set too low. This theory

is reinforced by the fact that the Princeton high threshold count rates are typically

four times higher than those from Harvard, whereas the low threshold count rates

are about the same. (Note that, at Harvard we get 1/4 of the light from a 61-inch

aperture, or an effective 30-inch aperture, and Princeton has all of the light from a

36-inch aperture, so one would expect the low threshold rates to be within 50% of

each other based on aperture size alone.)

3.8 Princeton data: triggers versus counts

Furthermore, if the high threshold counts are caused by hot events, then they should

not correlate with the triggers if the hot event veto is working. On the other hand, if

the high threshold count rates are dominated by events which are not vetoed, then a

correlation would be expected.

Suppose that the high threshold count rate is c and is the same for both detectors.

Each count in one detector provides an opportunity for a simultaneous count in
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Figure 3.10: Scatter plot showing trigger rate versus high threshold count rate for
the Princeton data. Each point represents a single observation. The parabola is a fit
to the data, explained below.

the other detector. This opportunity lasts lasts a time τ , the longest time between

two events that the apparatus considers to be “simultaneous” (typically of order 25

nanoseconds). Therefore, there is an “opportunity time” of cτ seconds per second.

The probability of having a count in the other detector during any time interval is

just c times the duration of the interval, and therefore the rate of simultaneous counts

(i.e. triggers) in both detectors is c2τ per second.

The important point to draw from this analysis is that we expect the simultaneous

event rate to be proportional to the individual event rate squared, where the constant

of proportionality is the aperture window. Figure 3.10 shows a scatter plot of trigger

rate versus high threshhold count rate for all of the Princeton data so far, with a

parabola drawn for reference. It certainly does not strain credulity much to claim

that there is such a quadratic dependence of trigger rate on count rate from looking

at this plot. However, in order to turn this observation into something quantitatively

useful, we need to be able to fit a parabola to the data we have and use the result to

55



predict how many triggers we expect from new observations. The uncertainty in the

fit for the parabola has a direct bearing on the uncertainty (width) of the probability

distribution for triggers.

The equation of the relevant parabola is

h = kc2 (3.10)

where c is the count rate, h is the trigger rate and k is a constant parameter that we

want to fit. It is important to emphasize that both h and c are rates that we cannot

measure directly. What we measure is the number of events (triggers and counts)

that happened during a given time interval. This implies that there are uncertainties

in both axes in figure 3.10, a fact that will manifest itself in the form of a convolution

integral below.

From a Bayesian perspective, fitting the parameter k is equivalent to finding the

posterior distribution

p(k|n1, n2, n3, . . .) (3.11)

where ni is the number of triggers recorded during observation i. To get started,

focus on p(k|n) for a single observation; including the data from all observations is

straightforward from there.

As usual, the starting point is Bayes’ theorem

p(k|n) =
P (n|k)p(k)

P (n)
(3.12)

The choice of prior distribution p(k) is almost irrelevant because of the large number

of observations involved. If we wanted to be pedantic, the correct choice would be

the maximum entropy prior that satisfies the constraint that 0 ≤ k < ∞, namely

p(k)dk =
dk

k
. (3.13)

However, it will be easier to use a uniform prior on k since the calculations that follow
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will have to be done numerically.

The probability distribution for n can be treated as a normalization constant since

this is exactly what we get by marginalizing out k in the numerator

P (n) =
∫ ∞

0
P (n|k)p(k)dk (3.14)

Therefore, we can ignore P (n) as long as we are careful to keep all of our posterior

distributions normalized. The problem therefore reduces to finding P (n|k).

We can assume that both types of events (triggers or counts) are described by

Poisson statistics. Suppose we know h, then as usual the probability of finding n

triggers during a time T is

P (n|h) =
(hT )ne−hT

n!
(3.15)

Equation 3.10 shows how to put this expression in terms of the count rate

P (n|k, c) =
(kc2T )ne−kc2T

n!
(3.16)

The problem is that we are not given c, but only the fact that we had m counts during

the time interval t (this is the source of the uncertainty in the abscissa of figure 3.10).

However, we can eliminate the nuisance parameter c by using marginalization if we

have a probability density for the rate c given m.

Therefore, we need an expression for the posterior probability density of a Poisson

rate c given that m events happened during a time t. The starting point is Bayes

theorem

p(c|m) =
P (m|c)p(c)

P (m)
(3.17)

In this case, the denominator can be considered to be a normalization constant found

by integrating the numerator over all possible values for c

P (m) =
∫ ∞

0
P (m|c)p(c)dc. (3.18)
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P (m|c) is given by the Poisson formula

P (m|c) =
cme−c

m!
(3.19)

and p(c) is given by the maximum entropy prior satisfying the constraint that 0 ≤
c < ∞

p(c) =
dc

c
(3.20)

The numerator in Bayes’ theorem is therefore

P (m|c)p(c) =
cm−1e−c

m!
(3.21)

and we can find the denominator by integrating it from 0 to ∞

P (m) =
1

m!

∫ ∞

0
cn−1e−cdc =

1

m!
Γ(m) =

1

m
(3.22)

so the exact posterior probability distribution for c given m is

p(c|m) =
cm−1e−c

(m − 1)!
. (3.23)

Since we are given m (this is precisely what it measured by the high threshhold

count rate diagnostic), we can use this to write

P (n|k, m) =
∫ ∞

0
P (n|k, c)p(c|m)dc (3.24)

which becomes

P (n|k, m) =
(kT )ntm

n!(m − 1)!

∫ ∞

0
e−(tc+kTc2)c2n+m−1dc (3.25)

An expression for the integral in terms of “parabolic cylinder functions” can be found

in Gradshteyn and Ryzhik, 3.462 number 1. However, since the parabolic cylinder

functions are themselves defined in terms of integrals which do not have known an-
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Figure 3.11: Fit to a single observation (Princeton number 1325)

alytic solutions, this amounts to nothing more than expressing an integral that I

cannot evaluate in terms of another integral that I cannot evaluate. At such times,

it is best to bring numerical methods to bear.

Figure 3.11 shows the result of applying the numerical fit to a single observation

(Princeton observation number 1325, of HD098230, a 4.87 magnitude F8.5V type

star), with the solid line representing the most probable value of k, and the dashed

lines representing k ± 1σ. The error bars shown are the 1σ errors in the Poisson rate

estimator derived in a previous section, namely σ =
√

m/t in the x direction and

σ =
√

n/T in the y direction. Figure 3.12 shows the values of the probability density

calculated at discrete values of k by numerical methods (points) overlaid by best-fit

gaussian distribution (solid line). The numerical values detemined by the fit were

k = 95.645 ± 10.146. Notice that the numerical probability density for k does differ

slightly from the gaussian fit; it is not exactly centered about its mean. However, the

difference is small.

To carry on with the analysis, we need a method for combining the data from all
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Figure 3.12: Fit to a single observation (Princeton number 1325)

the observations. If we use a uniform prior on k, then Bayes theorem can be written

p(k|n1, n2, n3, . . .) ∝ P (n1, n2, n3, . . . |k) (3.26)

where the constant of proportionality is found by requiring that the posterior distri-

bution for k should be normalized. Since the observations are independent of one

another,

P (n1, n2, n3, . . . |k) ∝ P (n1|k)P (n2|k)P (n3|k) . . . (3.27)

In order to avoid numerical difficulties, it is easier to work with the logarithm of the

right hand side (the so-called “log-likelihood”)

log P (n1, n2, n3, . . . |k) = const. + log P (n1|k) + log P (n2|k) + log P (n3|k) . . . (3.28)

The numerical implementation is now clear. The computer program keeps a one

dimensional array of double-precision floating-point values, indexed by the parameter
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k, where each array element holds the log-likelihood for the corresponding value of

the parameter. For each observation, we have recorded the number of high threshhold

counts m, the number of triggers n and the integration time T . The high threshhold

counts are always measured during a time period, t, lasting 600 milliseconds. To

incorporate the data from a given observation we compute

n log(kT ) + m log(t) − log(n!) − log((m − 1)!) + log
∫ ∞

0
e−(tc+kTc2)c2n+m−1dc (3.29)

for every value of k and add it into the corresponding log-likelihood array element.

A couple of observations can save a lot of numerical difficulties. First, a very

good approximation for the logarithm of a factorial is calculated using the Stirling

approximation

log(n!) =
1

2
log(2π) +

(
n +

1

2

)
log n − n +

1

12n
(3.30)

which has an error less than 1/(360n3) and relieves us of the need to calculate the

factorials of large integers.

Secondly, the majority of the contribution to the integral in 3.29 comes from the

vicinity of the maximum of the probability density for c, Equation 3.23. A function

of the form eµµm reaches its maximum at µ = m, and will fall to a value a e−10 times

smaller when µ = nm where

n − log n = 1 +
10

m
. (3.31)

Since m is the number of counts, we will always have m ≥ 1 in the data we are

analyzing, so the left side of the equation above can be conservatively approximated

by 11, giving n ≈ 14. Therefore the upper bound in the integral in 3.29 can be

approximated by c = 14m/t. A similar argument shows that the lower bound can be

set to a value m/n where
1

n
+ log n = 1 +

10

m
≤ 11 (3.32)
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Figure 3.13: Gaussian distribution fit to numerical posterior for k parameter

giving n ≈ 60, 000. In the Princeton data, m ≤ 4, 000, so m/60, 000 is not larger than

zero by a large enough amount to save any computation time. Therefore we leave the

lower bound at zero.

Finally, p(k|n) is computed by exponentiating and then normalizing the log-

likelihood function, we can add any constant we want to the log-likelihood function.

In particular, we can add a constant that will bring all of the exponents into the range

of values that can be expressed by double-precision floating-point numbers (roughly

2.3 × 10−308 to 1.7 × 10308 for positive numbers).

The net result of all these numerical exercises is the parabola shown already in

figure 3.10, and the probability density for the k parameter shown in 3.13. The

numerical value for k is 92.7±1.6. A gaussian fit is shown overlaid on the points that

were computed numerically; this time the agreement is very good.

Finally, we can examine what implications this analysis has for the instrument’s

aperture time. It was already shown that if the singles rate is c, the expected simul-

taneous rate is h = c2τ . Therefore the parameter k is the instrument aperture time
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τ , where c is measured in kilocounts per second and h is measured in triggers per

hour

92.740 = 3.6 × 109τ → τ ≈ 26ns (3.33)

To confirm this value, we set up a benchtop experiment using one of the spare printed

circuit boards that implement the block diagram in figure 2.3 (excluding the HAPDs

and low noise amplifiers). This circuit board was stimulated with a fast pulse genera-

tor, and the experiment confirmed that our coincidence aperture is about 25 nanosec-

onds.

There is another, more important conclusion that can be drawn from the quadratic

dependence of the Princeton trigger rate on the high threshold count rate, and that

is that the high threshold count rate is not dominated by hot events, as we would

have expected. Hot events should be vetoed, so they are not expected to contribute

much to the trigger rate, but they should dominate the high threshold count. Once

again, the interpretation points to comparator thresholds set too low on the Princeton

instrument.

3.9 Princeton data: triggers and events

Whereas the Harvard observatory has recorded 7536 triggers during a total of 141

days of integration time, the Princeton observatory has recorded 10,682 in only 16

days of integration time. Of these, only 313, or 3%, have been marked as events.

Some of the Princeton observations show remarkably large numbers of triggers, such

as observation number 937, a 1.5 hour integration that recorded 3271 triggers, of

which only 77 passed the validity tests.

Because the program has only been running for seven months, it is impossible to

look for a seasonal variation in the ratio of events to triggers in the Princeton data.

However, we can still check the consistency of the 3% ratio of events to triggers as a

function of the number of triggers recorded during an observation. This is plotted in

Figure 3.14, which shows that the Princeton ratio is also fairly consistent (compare

Figure 3.5).
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Figure 3.14: Ratio of events to triggers versus number of triggers per observation.
The horizontal line marks the global average ratio, 0.31

3.10 Results of the analysis

Uncovering the misalignment of the Harvard instrument was by far the most impor-

tant result of the analysis. However, a number of other important conclusions can

be drawn as well. First, although the two observatories are meant to be functionally

equivalent, there are a number of important differences between them:

1. The Harvard instrument gets 1/4 of the light from a 61-inch aperture telescope,

which is an effective 30.5-inch aperture, whereas the Princeton instrument gets

all of the light from a 36-inch aperture. This means that the Princeton instru-

ment should see about 40% more light, but in practice it seems to get about six

times less (see Figures 3.2, 3.8 and Equations 3.3, 3.9). Even so, the Harvard

system efficiency of 0.4% seems about five times lower than is usual for this sort

of astronomical facility.

2. The Harvard data shows no correlation between high and low threshold count
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rates nor between the trigger rate and high or low threshold count rates, whereas

the Princeton data shows a strong correlation between high and low threshold

count rates, and a weaker but still credible correlation between the trigger rate

and high threshold count rate (see Figures 3.6, 3.9 and 3.10). This strongly

implies that the ultimate origins of the triggers seen at the two different obser-

vatories are different.

3. Both observatories seem to mark a fixed percentage of the triggers as events

(i.e., they satisfy all validity tests), but the percentages differ by an order of

magnitude with Harvard accepting 30% but Princeton only 3%. Once again,

this seems to point to different origins for the triggers at each observatory.

Although an adequate explanation for the triggers we do see was not developed,

some doubt was cast on some of our formerly favorite theories — that they were

caused by hot events passing through the veto (due to the lack of correlation with

high threshold count rates), or that they might be the result of single-photo-electron

events exploring the long tail of the pulse height distribution (due to the lack of cor-

relation with low threshold count rates). The trigger rate at the Harvard observatory

is not strongly correlated with the count rates measured by the diagnostics, and the

Harvard instrument continued to record triggers even during the periods of misalign-

ment. Conversely, the Princeton triggers do seem to go up significantly for brighter

stars, probably indicating that the comparator high threshold setting is too low. Fur-

thermore the Princeton high and low threshold count rates are strongly correlated

and the low threshold count rate does not seem to register all the outputs from the

detectors, indicating the the low threshold setting is too high.
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Chapter 4

Conclusions

In an experiment such as this where the detection of a signal is expected to be a very

rare event, it is critical to continuously monitor a set of diagnostics which ensure that

the apparatus is functioning correctly since the presence of the sought-after signal

cannot be depended on as an indication of a working system. To a large extent this

principle has guided the design of the instrument, and a considerable part of the

electronics that support the hybrid APDs have no other function than to make sure

that the detectors are working as intented. Nonetheless we were caught unawares by

a failure mode that we hadn’t anticipated.

The targeted optical SETI experiment is based on the reasonable assumption

that signals from extraterrestrial civilizations will come from the vicinity of stars, in

particular stars not too dissimilar from our own. The background starlight is more

than just a potential source of accidental pileups, it is also the one unmistakable

marker that the instrument is on target.

4.1 Photometry

Standard astronomical catalogs provide a tremendous amount of data about the stars

in our survey; however, only the data included in the radial velocity survey header

(the coordinates and visual magnitudes) is available to our instrument in real time and

included in the database for post-analysis. If, in addition, the spectral classifications
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of the stars were readily available, it would be possible to calculate the expected

photon flux to good precision and check it against the measured photon flux during

the diagnostic phase of an observation. This type of diagnostic would have caught

the misalignment of the Harvard instrument early on. Even now, it is still difficult

to tell if a given observation considered in isolation is producing the expected flux

because we do not have a means of measuring the dark count rate in our detectors

during the diagnostic phase of an observation. The dark count rate can be as much

as the flux from a magnitude eight star.

An additional difficulty is that at present, single photon counts are only accu-

mulated for 0.3 seconds during the diagnostic phase which is not very long if the

objective is good photometry. Although this interval could be extended, a much bet-

ter approach would be to use the entire integration period for photometry, since this

gives the highest quality photometry possible subject to the constraint that the inte-

gration time is chosen by the radial velocity survey observers. This would require a

significant modification of the existing circuit, since an additional independent set of

comparators permanently set with single photo-electron thresholds would be needed.

It is a proposal worth considering, however.

High quality photometry would require more than just a longer exposure to the

starlight, however. In addition to measuring the count rate on target, we need to

measure the count rate off target. The off target count rate has three components:

dark counts, hot events and sky brightness. Sky brightness can be distinguished

from dark counts and hot events by pointing the telescope at blank sky and measur-

ing the count rate with the instrument shuttered and then uncovered. Dark counts

can be distinguished from hot events by measuring the number of counts with the

comparator thresholds set for single photo-electrons (dark counts) and then multiple

photo-electrons (hot events) with the instrument shuttered.

Figure 4.1 shows a scatter plot of the measured low threshold count rate versus

visual magnitude for the month of May, 2001. The notable feature of this plot is the

count rate remains high, around 104–105 Hz, even for stars with increasing magnitudes

above about magnitude seven. Clearly, these counts must represent dark counts and
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Figure 4.1: Scatter plot of low threshold count rate verses visual magnitude for ob-
servations from the Harvard observatory during May, 2001.

hot events, not stellar photons, whether or not the instrument was misaligned at the

time the observations were made. However, the detectors are not saturated by these

count rates, as the much higher rates for brighter stars reveal. What is clear, however,

is that it would be impossible to determine if the detector is illuminated or not from

only the low threshold count rate since the dark counts and hot events produce a low

threshold count rate at least as high as the expected photon rate. For stars around

magnitude eight, the difference between a shuttered and illuminated detector should

be about a factor of two in the count rate, but without a shutter this difference

cannot be measured. Furthermore, without knowledge of the spectral classification

of the target we cannot even compute the expected count rate to within the required

factor of two.

All of these measurements would require significant modifications of the instru-

ment (for example, there is no shutter in the current configuration) and the observing

routine, and high quality photometry was never our objective. However, high-quality
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photometry considered as a side-effect of a complete and thorough detector character-

ization before each observation would be a big help for understanding our background.

A number of very important questions have been left unanswered by the analysis, not

least of which is what is the ultimate source of the triggers we see? It certainly

seems that there are different mechanisms at work at the different observatories, and

that at the Harvard observatory this mechanism shows a regular seasonal variation.

Unfortunately, without more complete information about the condition of the detec-

tors during these observations, it is very difficult to find a satisfactory answer. For

example, the high threshold count rate measured during the dianostic phase of each

observation is supposed to provide information about the hot event rate. However,

since this rate is measured only during 0.3 seconds, it usually counts from zero to at

most a few hot events. This means the underlying rate is measured very poorly, and

something as essential as determining if this rate shows a seasonal variation corre-

sponding to the trigger rate variation is very hard to do because of the small-number

statistics involved.

4.2 Triggers and events

As was shown, the validity tests that we enforce on the triggers seem to pass a fairly

large number of false positives. In the case of the Harvard observatory, almost a third

of the triggers which we believe to be background are marked as events; at Princeton

it is a much smaller percentage of a much larger number of triggers.

A significant limitation on our ability to improve these validity tests is the limited

voltage resolution of the comparator array (which is used as a nonlinear two bit

analog–to–digital converter) and the shallow LIFO depth of the MTD135 (maximum

depth is sixteen events). This means that our ability to digitize and store the output

waveforms from the detectors is fairly crude (see Figure 2.4 for an example). As was

discussed, the hot events in the detectors have characteristic waveforms that are very

different from the normal output when seen on an oscilloscope, and this was the basis

of the hot event veto circuitry built into the instrument. If the summertime triggers
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also had a characteristic waveform, and these waveforms could be stored in more

detail, it would be much easier to distinguish the real photons from the background.

There are essentially four theories we are entertaining to try to explain the sum-

mertime increase in the trigger rate.

1. The number of hot events is going up during the summer. This is difficult to

detemine from the data available because the high threshold count rate, which

should be a reflection of the hot event rate, is measured for too short a time

interval.

2. The gain of the APD is going up during the summer. There is a well known

temperature dependence in the gain of an APD, but our power supply should

be compensating for this. We have looked for a summertime gain increase by

checking the detector outputs on an oscilloscope, and none was seen.

3. There is an increase in the amount of corona discharge and sparking in the

detectors (which have a -7500 volt bias applied to them) during the summer

because of increased humidity. This is the most likely explanation, although it

is troubling that our efforts to keep the instrument dry seem to have had little

effect on the trigger rate during summer.

4. The number of dark counts is going up during the summers. It is well known

that the dark count rate in phototubes is temperature dependent; this is why

they are often cooled in astronomical instruments. Futhermore, it can be seen

from the plots in Appendix A that during the misaligned period from June 2001

until February of 2002 the number of low threshold counts went down by more

than an order of magnitude as the temperatures cooled from summer to winter.

However, it is not at all clear why dark counts, which normally do not exceed

the high threshold setting, would cause triggers.

None of these theories is completely satisfactory with the information we have

on hand at the moment. A deeper investigation of the problem seems called for,
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perhaps involving cooling the detectors as well as controlling the humidity of their

environment.

4.3 Two observatory operations

Although having a thorough understanding of the instrumental backgrounds and

controlling them to the largest degree possible is the best experimental practice, two

observatory operation makes it so easy to cleanly distinguish between the real triggers

and the background seen at each observatory individually that controlling it becomes

less important. It is hard to imagine any improvement that could be made at either

observatory in isolation which would lead to as much of a reduction in the noise as

using both in tandem does.

A number of new operational issues come up with a second observatory. One of the

main goals of the design of the original, single observatory system was to minimize the

burden on the radial velocity survey observers. However, coordinating observations

at two geographically separated locations necessarily requires tighter integration of

operations and some interaction between the observers at the two instruments. It is

no longer pratical to try to maintain the illusion that the OSETI instrument “runs

in the background” while the radial velocity survey runs the same way it always has.

Since the Princeton observer only receives notification when the Harvard observer

moves to a new target, he has no way to tell when, for example, weather conditions

at Harvard have deteriorated to the point so that observations have shut down for

the night. To some extent, these sorts of problems can be solved with a telephone;

however, it is a nuisance for the Harvard observer to be burdened with the obligation

to call Princeton before every fifteen minute break.

A number of possible solutions have been discussed. One particularly attractive

one would be to use voice-over-IP to implement a simple two-way intercom between

the two observatories which could be activated simply by keying a microphone.
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Figure 4.2: Histogram of the percentage of targets which recorded a given event rate
or higher as a function of event rate for Harvard data (left) and Princeton data (right).
In the left panel, the solid line shows data from the aligned period, the dashed line
from the misaligned period.

4.4 Prevalence of transmitting civilizations

The Harvard data excluding the misaligned periods contains 8,555 observations of

3,802 objects with the average integration lasting 506 seconds. During these obser-

vations, 1,755 triggers and 467 events were recorded. We can use this information to

set an approximate limit on the number of civilizations transmitting according to our

model.

Suppose that the transmitter is illuminating the N stars nearest to his own, and

that his transmitter can transmit F times per second. Then the time that each

receiver has to wait between successive transmissions is N/F . N grows proportionally

to the range cubed, and for a range R of 100 light years N ≈ 1000, so N = 10−3R3.

Define

η = 103 F

R3
; (4.1)

η is the event rate on Earth due to a signal from this transmitter.
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The Figure 4.4 shows histograms of the percentage of targets which recorded a

given event rate or higher as a function of the event rate. In the left panel, the solid line

represents data from the Harvard observatory during periods of good alignment and

the dashed line represents data from the misaligned period; the right panel represents

all of the Princeton data. All Harvard summertime data was discarded because of the

seasonal increase in the trigger rate; there is no summertime data from the Princeton

observatory yet. The two histograms in the left panel include roughly the same

number of individual objects: 3,802 from the “good” Harvard data and 3,293 from

the “bad”. The Princeton data includes a total of 1,017 distinct objects.

At both observatories, about 8% of the objects, recorded one event per hour or

more. If we make the assumption that all of the events recorded so far are false

alarms, then Figure 4.4 sets the limit on the sensitivity of the instrument in terms of

η. In particular, we must have η ≥ 40 events per hour in order to be 99% confident

of a detection since less than 1% of our targets recorded as many triggers per hour

accidentally. On the other hand, the fact that we did not see any event rates above

45 per hour allows us to set a limit on η for the stars within our target list. In other

words, if there is an ETI transmitting to Earth from one of the stars in our target

list, then η < 45 per hour for this transmitter. Since our target list is fairly complete

out to 100 light years, we can say furthermore that F < 12.5Hz for any ETI within

this distance.

This limit on F can be used to set an upper bound on the power used for trans-

mission by ETIs within 100 light years of Earth. At the Harvard observatory, the

overall system efficiency of 0.2% means that in order for us to receive four photons

(the minimum requirement to exceed the comparator thresholds), 2,000 must be de-

livered to our effective aperture. We get 1/4 of the light from a 61-inch telescope, so

our effective aperture diameter is 30.5-inches, or 0.47 square meters. This means that

the incoming fluence of photons would have to be about 4,255 per square meter. As

has already been shown in Section 1.5, the transmission strategy which is least de-

manding on the transmitter’s astrometry is to illuminate a constant area at the target,

adjusting the beam size for range as necessary. If we assume that the illuminated area

73



is circular with a diameter of 10 AU (an area of 1.75× 1024 square meters), then the

required output from the transmitter is 7.5 × 1027 photons. At a wavelength of 550

nanometers (2.25 eV), this corresponds to an energy of 2.7 gigajoules per nanosecond

pulse. The average power required to transmit at 12.5 Hz is therefore 34 gigawatts,

which is the electrical output of about 34 large nuclear reactors. This upper bound

must be qualified with the observation that if a civilization with these resources at

their disposal chose to expend them with lower energy pulses at a higher repetition

rate then their pulses might not contain enough photons for us to detect them.

4.5 Final thoughts

In many respects our optical SETI program has been a pioneer. We were the first

targeted search for pulses transmissions in optical wavelengths, and the first to use

two observatories to veto false positives. As the Harvard optical SETI program moves

forward, lessons learned from this experiment will be incorporated into the design of

future experiments, notably the all sky survey instrument which is currently in an

advanced stage of development. This instrument will implement a number of the

recommendations made here, including a more detailed digitization of the detector

waveforms and better photometry by monitoring low and high threshold count rates

continuously during integration. The detector system being developed for the all sky

survey is conceptually just a multi-pixel version of the one used in this experiment,

but this seemingly simple additional requirement engenders a vastly more sophisti-

cated system. The only reasonable way to implement such a system is to build a

custom integrated circuit, which meant that we were free to design it with exactly

the functionality that is needed.

The biggest advantage the all sky survey will have is the increase in sky coverage.

If, as Freeman Dyson suggests, interstellar communications will not necessarily come

from the vicinity of stars, then any complete SETI program will have to fill in the

spaces between. Our targeted program which observed 8,000 stars with a field of view

of one arcminute, covered less than 0.005% of the sky; the rest will have to come later.
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Appendix A

Misalignment

This appendix contains plots of low threshold count rate versus visual magnitude for

all of the observations made during the first three and a half years of the Harvard

optical SETI program, grouped chronologically by month. The instrument has been

removed from and then replaced on the telescope a number of times during this

period to make the telescope available for other instruments and for maintenance

on the telescope. Table A displays the information we have on these events from

the director’s log files (thanks to Robert Stefanik for providing this information).

“Astronomy 191” is an undergraduate course at Harvard which uses a CCD detector

on the 61-inch telescope, requiring removal of the echelle spectrograph and with it

our optical SETI instrument. The effect of the mirror recoating in October 2000 is

especially noticeable in the plots that follow; the signal strength improved by almost

an order of magnitude over previous well-aligned periods.

Table A.1: Removal and replacement of the optical SETI instrument

Removed Replaced Comments

17 February 1999 23 February 1999 Astronomy 191
10 April 2000 15–23 April 2000 Astronomy 191
9 October 2000 24 October 2000 Mirror recoating
13 April 2001 20 April 2001 Astronomy 191
16 February 2002 2–3 March 2002 Astronomy 191
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Figure A.1: October 1998 through March 1999
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Figure A.2: April 1999 through September 1999
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Figure A.3: October 1999 through March 2000
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Figure A.4: April 2000 through September 2000
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Figure A.5: October 2000 through March 2001
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Figure A.6: April 2001 through September 2001
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Figure A.7: October 2001 through March 2002
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